• Title/Summary/Keyword: Start-Ground Point

Search Result 16, Processing Time 0.023 seconds

A Fast Ground Segmentation Method for 3D Point Cloud

  • Chu, Phuong;Cho, Seoungjae;Sim, Sungdae;Kwak, Kiho;Cho, Kyungeun
    • Journal of Information Processing Systems
    • /
    • v.13 no.3
    • /
    • pp.491-499
    • /
    • 2017
  • In this study, we proposed a new approach to segment ground and nonground points gained from a 3D laser range sensor. The primary aim of this research was to provide a fast and effective method for ground segmentation. In each frame, we divide the point cloud into small groups. All threshold points and start-ground points in each group are then analyzed. To determine threshold points we depend on three features: gradient, lost threshold points, and abnormalities in the distance between the sensor and a particular threshold point. After a threshold point is determined, a start-ground point is then identified by considering the height difference between two consecutive points. All points from a start-ground point to the next threshold point are ground points. Other points are nonground. This process is then repeated until all points are labelled.

Suggestion of Analytical Technique Applying Multi-Linear Models for Analysis of Skin Shear Behavior of Tension-Type Ground Anchors in Weathered Soil (풍화토 정착 인장형 앵커에서 주면전단거동분석을 위한 다중선형모델 적용 해석기법의 제안)

  • Jeong, Hyeon-Sik;Lee, Yeong-Saeng
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.11
    • /
    • pp.5-19
    • /
    • 2018
  • The characteristics of the skin shear stress distribution for the fixed length of the ground anchor are extremely nonlinear and the engineering mechanisms are complex relatively. So it is difficult to design the anchors simulating the actual behavior by considering various soil conditions and nonlinear behavior. Due to these limits, constant skin shear stress distributions for the whole fixed length of the ground anchor are usually assumed in the design for the sake of convenience. In this study, to assess the pull-out behavior of the tension-type ground anchors, the in-situ pull-out tests in weathered-soil conditions were carried out. Based on the test results, the skin shear behaviors for the fixed length of tension-type ground anchors were established and the multi-linear slip shear model predicting this behavior and an analytical technique applying this model were proposed. From the similarity between the results of the in-situ pull-out tests and those of the analytical technique, the applicability and availability of the multi-linear slip shear model and the proposed analytical technique were verified. The maximum shear stress was developed at the start point of the fixed length acting with the smaller load than the maximum pull-out load but the minimum shear stress was developed at the start point of the fixed length and the maximum shear stress was developed at the point apart from the start point of the fixed length after the maximum pull-out load.

Analysis of ground reaction force contributing to horizontal velocity factors in short distance 100M race (육상 단거리 100m 수평속도 요인에 기여하는 지면반력분석)

  • Choi, Su-Nam
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.4
    • /
    • pp.2134-2141
    • /
    • 2014
  • This study was to analyze ground reaction force according to Crouching Start type at the starting point of 100M race. The subjects of this study were 8 women sprinters and we analyzed their ground reaction force by classifying the distance between start blocks as three types. The followings are the results of the study. According to maximum horizontal ground reaction force analysis result, in the left foot placed in front, BS among excellent group and MS in non-excellent group showed the biggest reaction force value. In the right foot placed at the back, MS in both groups showed the biggest reaction force value. MS in the right foot of the excellent group was the biggest (0.83 BW). According to maximum vertical ground reaction force analysis result, in the left foot placed in front, ES among excellent group and BS in non-excellent group showed the biggest reaction force value. In the right foot placed at the back, BS among excellent group and MS in non-excellent group showed the biggest reaction force value.

Hybrid thermal seasonal storage and solar assisted geothermal heat pump systems for greenhouses

  • Ataei, Abtin;Hemmatabady, Hoofar;Nobakht, Seyed Yahya
    • Advances in Energy Research
    • /
    • v.4 no.1
    • /
    • pp.87-106
    • /
    • 2016
  • In this research, optimum design of the combined solar collector, geothermal heat pump and thermal seasonal storage system for heating and cooling a sample greenhouse is studied. In order to optimize the system from technical point of view some new control strategies and functions resulting from important TRNSYS output diagrams are presented. Temperatures of ground, rock bed storage, outlet ground heat exchanger fluid and entering fluid to the evaporator specify our strategies. Optimal heat storage is done with maximum efficiency and minimum loss. Mean seasonal heating and cooling COPs of 4.92 and 7.14 are achieved in series mode as there is no need to start the heat pump sometimes. Furthermore, optimal parallel operation of the storage and the heat pump is studied by applying the same control strategies. Although the aforementioned system has higher mean seasonal heating and cooling COPs (4.96 and 7.18 respectively) and lower initial cost, it requires higher amounts of auxiliary energy either. Soil temperature around ground heat exchanger will also increase up to $1.5^{\circ}C$ after 2 years of operation as a result of seasonal storage. At the end, the optimum combined system is chosen by trade-off between technical and economic issues.

Countermovement Jump Strategy Changes with Arm Swing to Modulate Vertical Force Advantage

  • Kim, Seyoung
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.2
    • /
    • pp.141-147
    • /
    • 2017
  • Objective: We obtained force-displacement curves for countermovement jumps of multiple heights and examined the effect of an arm swing on changes in vertical jumping strategy. Countermovement jumps with hands on hips (Condition 1) and with an arm swing (Condition 2) were evaluated to investigate the mechanical effect of the arm movement on standing vertical jumps. We hypothesized that the ground reaction force (GRF) and/or center of mass (CoM) motion resulting from the countermovement action would significantly change depending on the use of an arm swing. Method: Eight healthy young subjects jumped straight up to five different levels ranging from approximately 10% (~25 cm) to 35% (~55 cm) of their body heights. Each subject performed five sets of jumps to five randomly ordered vertical elevations in each condition. For comparison of the two jumping strategies, the characteristics of the boundary point on the force-displacement curve, corresponding to the vertical GRF and the CoM displacement at the end of the countermovement action, were investigated to understand the role of arm movement. Results: Based on the comparison between the two conditions (with and without an arm swing), the subjects were grouped into type A and type B depending on the change observed in the boundary point across the five different jump heights. For both types (type A and type B) of vertical jumps, the initial vertical force at the start of push-off significantly changed when the subjects employed arm movement. Conclusion: The findings may imply that the jumping strategy does change with the inclusion of an arm swing, predominantly to modulate the vertical force advantage (i.e., the difference between the vertical force at the start of push-off and the body weight).

A Study on the Connection between Contemporary Ecological-Architecture and Nature (현대건축에서의 생태적 건축공간과 자연과의 관계 양상에 관한 고찰)

  • 이윤희;이영수
    • Korean Institute of Interior Design Journal
    • /
    • v.13 no.4
    • /
    • pp.56-65
    • /
    • 2004
  • Contemporary Architecture is showing many aspects on the ground of ecological paradigm, while, searching for a new architectural direction to make importance of environment that has been still little accounted of a subject of discussion. And 'sustainability'will become a central concept of a Contemporary architectural topic, continuously. With a demand of the time, ecological inclinations have been started to develop a collective low-rise housing project. It is going to expands several fields, but for reasons of social economic activity for human fundamental being, potentialities of basic problem solution are enough for ecologyㆍenvironment, but distinct direction and measures are still not obvious conditions. This study is for healing restoration in global environment, with architectural approach, through analyzing relation between ecological architectural space and nature, and abstracts various inter-relational aspect's specific character. the purpose of this study is another approach of intimate relation of ecological architecture and nature. Therefore, this study is significant to be on the search for a start to suggest a new point of view to ecological architectural space.

Experimental and numerical investigation of closure time during artificial ground freezing with vertical flow

  • Jin, Hyunwoo;Go, Gyu-Hyun;Ryu, Byung Hyun;Lee, Jangguen
    • Geomechanics and Engineering
    • /
    • v.27 no.5
    • /
    • pp.433-445
    • /
    • 2021
  • Artificial ground freezing (AGF) is a commonly used geotechnical support technique that can be applied in any soil type and has low environmental impact. Experimental and numerical investigations have been conducted to optimize AGF for application in diverse scenarios. Precise simulation of groundwater flow is crucial to improving the reliability these investigations' results. Previous experimental research has mostly considered horizontal seepage flow, which does not allow accurate calculation of the groundwater flow velocity due to spatial variation of the piezometric head. This study adopted vertical seepage flow-which can maintain a constant cross-sectional area-to eliminate the limitations of using horizontal seepage flow. The closure time is a measure of the time taken for an impermeable layer to begin to form, this being the time for a frozen soil-ice wall to start forming adjacent to the freeze pipes; this is of great importance to applied AGF. This study reports verification of the reliability of our experimental apparatus and measurement system using only water, because temperature data could be measured while freezing was observed visually. Subsequent experimental AFG tests with saturated sandy soil were also performed. From the experimental results, a method of estimating closure time is proposed using the inflection point in the thermal conductivity difference between pore water and pore ice. It is expected that this estimation method will be highly applicable in the field. A further parametric study assessed factors influencing the closure time using a two-dimensional coupled thermo-hydraulic numerical analysis model that can simulate the AGF of saturated sandy soil considering groundwater flow. It shows that the closure time is affected by factors such as hydraulic gradient, unfrozen permeability, particle thermal conductivity, and freezing temperature. Among these factors, changes in the unfrozen permeability and particle thermal conductivity have less effect on the formation of frozen soil-ice walls when the freezing temperature is sufficiently low.

Analysis of Surface Image Velocity Field without Ground Control Points using Drone Navigation Information (드론의 비행정보를 이용한 지상표정점 없는 표면유속장 분석)

  • Yu, Kwonkyu;Lee, Junhyeong
    • Ecology and Resilient Infrastructure
    • /
    • v.9 no.3
    • /
    • pp.154-162
    • /
    • 2022
  • In this study, a technique for estimating water surface velocity fields in the Universal Transverse Mercator coordinate system using the GPS information of a propagating drone but not ground control points is developed. First, we determine the image direction in which the upper side of an image is directed based on the navigation information of the drone. Subsequently, we assign the start and end frames of the video used and determine the analysis range. Using these two frames, we segment the measurement cross-section into a few subsections at regular intervals. At these subsections, we analyze 30 frame images to create spatio-temporal volumes for calculating the velocity fields. The results of the developed method (propagating drone surface image velocimetry) are compared with those of the existing method (hovering drone surface image velocimetry), and relatively good agreement is indicated between both in terms of the velocity fields.

Trajectory Optimization for Biped Robots Walking Up-and-Down Stairs based on Genetic Algorithms (유전자 알고리즘을 이용한 이족보행 로봇의 계단 보행)

  • Jeon Kweon-Soo;Kwon O-Hung;Park Jong-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.75-82
    • /
    • 2006
  • In this paper, we propose an optimal trajectory for biped robots to move up-and-down stairs using a genetic algorithm and a computed-torque control for biped robots to be dynamically stable. First, a Real-Coded Genetic Algorithm (RCGA) which of operators are composed of reproduction, crossover and mutation is used to minimize the total energy. Constraints are divided into equalities and inequalities: Equality constraints consist of a position condition at the start and end of a step period and repeatability conditions related to each joint angle and angular velocity. Inequality constraints include collision avoidance conditions of a swing leg at the face and edge of a stair, knee joint conditions with respect to the avoidance of the kinematic singularity, and the zero moment point condition with respect to the stability into the going direction. In order to approximate a gait, each joint angle trajectory is defined as a 4-th order polynomial of which coefficients are chromosomes. The effectiveness of the proposed optimal trajectory is shown in computer simulations with a 6-dof biped robot that consists of seven links in the sagittal plane. The trajectory is more efficient than that generated by the modified GCIPM. And various trajectories generated by the proposed GA method are analyzed in a viewpoint of the consumption energy: walking on even ground, ascending stairs, and descending stairs.

Study on Starting Pressure of Supersonic Exhaust Diffusers to Simulate high Altitude Environment (고고도 모사용 초음속 디퓨져의 시동압력에 대한 연구)

  • Yoon, Sang-Kyu;Yeom, Hyo-Won;Kim, Jin-Kon;Sung, Hong-Gye;Kim, Yong-Wook;Oh, Seung-Hyup
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.12 no.4
    • /
    • pp.16-23
    • /
    • 2008
  • Theoretical and numerical approaches were conducted in order to study supersonic exhaust diffusers to simulate high altitude performance of rockets on the ground. A physical model of concern includes a rocket motor, vacuum chamber, and diffuser, which have axisymmetric configurations. An analysis was conducted to investigate operation characteristics of supersonic exhaust diffusers from a flow-development point of view. Emphasis was placed on theoretical formulation to predict the starting pressure of diffusers, the effect of the vacuum chamber size, and the minimum starting pressure of the rocket motor to start the diffuser.