• Title/Summary/Keyword: Stars: low-mass

Search Result 123, Processing Time 0.02 seconds

DUST SHELL MODELS FOR LOW MASS-LOSS RATE OXYGEN-RICH AGB STARS

  • SUH KYUNG-WON
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.267-270
    • /
    • 2005
  • We investigate the spectral energy distributions (SEDs) of low mass-loss rate O-rich asymptotic giant branch (AGB) stars using the infrared observational data including the Infrared Space Observatory (ISO) data. Comparing the results of detailed radiative transfer model calculations with observations, we find that the dust formation temperature is much lower than 1000 K for standard dust shell models. We find that the superwind model with a density-enhanced region can be a possible alternative dust shell model for LMOA stars.

3D Radiation-Hydrodynimics for surface turbulence of Low-mass Stars

  • Bach, Kiehunn;Kim, Yong-Cheol
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.44 no.1
    • /
    • pp.84.3-84.3
    • /
    • 2019
  • We investigate 3D radiation-hydrodynamics (RHD) for surface convection of the solar-type low-mass stars (M = 0.8, 0.9, and 1.0 Msun). The outer convection zone (CZ) of low-mass stars is an extremely turbulent region composed of partly ionized compressible gases at high temperature. Particularly, the super-adiabatic layer (SAL), the top of the CZ is the transition region where the transport of energy changes drastically from convection to radiation. In order to accurately describe physical processes, a realistic treatment of radiation should be considered as well as convection. As a starting model, the initial stratification in the outer envelope calculated using the solar calibrations in the context of the standard stellar theory. When the numerical fluid becomes thermally relaxed, the thermodynamic structure of the steady-state turbulent flow was explicitly collected. In this presentation, we compared thermodynamic properties of turbulent convection of the solar-type low-mass stars.

  • PDF

THE EVOLUTION OF THE SOLAR NEIGHBORHOOD: II TIME-DEPENDENT IMF AND PRESENT DAY MASS FUNCTION

  • Lee, See-Woo;Hong, Seung-Soo
    • Journal of The Korean Astronomical Society
    • /
    • v.15 no.2
    • /
    • pp.71-77
    • /
    • 1982
  • According to the star formation rate and metal enrichment rate given by the disk-halo model of Lee and Ann (1981), the two different forms of time-dependent initial mass function (IMF) and the present day mass function (PDMF) of nearby stars have been examined. It was shown that the constraint for the initial rapid metal enrichment requires the time-dependence of IMF at the very early phase ($t{\lesssim}5{\times}10^8$ yrs) of the solar neighborhood. The computed PDMF's show that the PDMF is nearly independent of any specific functional form of IMF as long as the latter includes a Gaussian distribution of log m. This result is due to the very small fractional mass $({\times}5%)$ of stars formed at the very early period during which the IMF is time-dependent. The computed PDMF suggests the presence of more numerous low mass stars than shown in Miller and Scalo's (1979) PDMF, supporting the possibility of the existence of low-velocity M dwarfs. According to the number distribution of stars with respect to [Fe/H], the mean age of these low mass star must be very old so as to yield the mean metal abundance $\bar{[Fe/H]}{\approx}-0.15$ for the stars in the solar neighborhood.

  • PDF

MOLECULAR OUTFLOWS AND THE FORMATION PROCESS OF VERY LOW-MASS OBJECTS

  • PHAN-BAO, NGOC;DANG-DUC, CUONG;LEE, CHIN-FEI;HO, PAUL T.P.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.83-86
    • /
    • 2015
  • We present observational results characterizing molecular outflows from very low-mass objects in ${\rho}$ Ophiuchi and Taurus. Our results provide us with important implications that clarify the formation process of very low-mass objects.

LOW-MASS STAR FORMATION: CURRENT STATUS AND FUTURE PROGRESS WITH ALMA

  • Tafalla, Mario
    • Publications of The Korean Astronomical Society
    • /
    • v.33 no.3
    • /
    • pp.45-57
    • /
    • 2018
  • Low-mass star-formation studies deal with the birth of individual solar-type stars as it occurs in nearby molecular clouds. While this isolated mode of star formation may not represent the most common form of stellar birth, its study often provides first evidence for the general ingredients of star formation, such as gravitational infall, disk formation, or outflow acceleration. Here I briefly review the current status and the main challenges in our understanding of low-mass star formation, with emphasis in the still mysterious pre-stellar phase. In addition to presenting by-now classical work, I also show how ALMA is starting to play a decisive role driving progress in this field.

SUSTAINING GALAXY EVOLUTION: THE ROLE OF STELLAR FEEDBACK

  • JAVADI, ATEFEH;VAN LOON, JACCO TH.;KHOSROSHAHI, HABIB
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.355-358
    • /
    • 2015
  • We have conducted a near-infrared monitoring campaign at the UK InfraRed Telescope (UKIRT), of the Local Group galaxy M33. The main aim was to identify stars in the very final stage of their evolution, and for which the luminosity is more directly related to the birth mass than the more numerous less-evolved giant stars that continue to increase in luminosity. The pulsating giant stars (AGB and red supergiants) are identified and their distributions are used to derive the star formation rate as a function of age. These stars are also important dust factories; we measure their dust production rates from a combination of our data with Spitzer Space Telescope mid-IR photometry. The mass-loss rates are seen to increase with increasing strength of pulsation and with increasing bolometric luminosity. Low-mass stars lose most of their mass through stellar winds, but even super-AGB stars and red superginats lose ~40% of their mass via a dusty stellar wind. We construct a 2-D map of the mass-return rate, showing a radial decline but also local enhancements due to agglomerations of massive stars. By comparing the current star formation rate with total mass input to the ISM, we conclude that the star formation in the central regions of M33 can only be sustained if gas is accreted from further out in the disc or from circum-galactic regions.

Low-mass evolved stars through the eyes of ALMA

  • Kim, Hyosun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.118.1-118.1
    • /
    • 2014
  • Stars create and expel new chemical elements and dust at the end of the stellar life cycle. Therefore, understanding the evolved stars, their mass loss process, and the conditions of the returning material to be mixed with the surrounding interstellar medium is an important step toward studies on the new generation of stars as well as the evolution of cosmic elements in galactic scale. I will review the first results from the ALMA Early Science on the evolved stars and direct future works.

  • PDF

On the origin of Na-O anticorrelation in globular clusters

  • Kim, Jaeyeon;Lee, Young-Wook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.49.1-49.1
    • /
    • 2017
  • In order to investigate the origin of multiple stellar populations in the halo and bulge of the Milky Way, we have constructed chemical evolution models for the low-mass proto-Galactic subsystems such as globular clusters (GCs). Unlike previous studies, we assume that supernova blast waves undergo blowout without expelling the pre-enriched gas, while relatively slow winds of massive stars, together with the winds and ejecta from low and intermediate mass asymptotic giant branch stars, are all locally retained in these less massive systems. We first applied these models to investigate the origin of super-helium-rich red clump stars in the metal-rich bulge as recently suggested by Lee et al. (2015). We find that chemical enrichments by the winds of massive stars can naturally reproduce the required helium enhancement (dY/dZ = 6) for the second generation stars. Disruption of these "building blocks" in a hierarchical merging paradigm would have provided helium enhanced stars to the bulge field. Interestingly, we also find that the observed Na-O anticorrelation in metal-poor GCs can be reproduced, when multiple episodes of starbursts are allowed to continue in these subsystems. Specific star formation history with decreasing time intervals between the stellar generations, however, is required to obtain this result, as would be expected from the orbital evolution of these subsystems in a proto-Galaxy. The "mass budget problem" is also much alleviated by our models without ad-hoc assumptions on star formation efficiency and initial mass function.

  • PDF

New insights on the origin of multiple stellar populations in globular clusters

  • Kim, Jaeyeon;Lee, Young-Wook
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.43 no.1
    • /
    • pp.46.1-46.1
    • /
    • 2018
  • In order to investigate the origin of multiple stellar populations in the halo and bulge of the Milky Way, we have constructed chemical evolution models for the low-mass proto-Galactic subsystems such as globular clusters. Unlike previous studies, we assume that supernova blast waves undergo blowout without expelling the pre-enriched gas, while relatively slow winds of massive stars, together with the winds and ejecta from low and intermediate mass asymptotic-giant-branch stars, are all locally retained in these less massive systems. We find that the observed Na-O anti-correlations in metal-poor GCs can be reproduced when multiple episodes of starbursts are allowed to continue in these subsystems. A specific form of star formation history with decreasing time intervals between the stellar generations, however, is required to obtain this result, which is in good agreement with the parameters obtained from our stellar evolution models for the horizontal-branch. The "mass budget problem" is also much alleviated by our models without ad-hoc assumptions on star formation efficiency and initial mass function. We also applied these models to investigate the origin of super helium-rich red clump stars in the metal-rich bulge as recently suggested by Lee et al. (2015). We find that chemical enrichments by the winds of massive stars can naturally reproduce the required helium enhancement (dY/dZ = 6) for the second-generation stars. Disruption of proto-globular clusters in a hierarchical merging paradigm would have provided helium enhanced stars to the bulge field.

  • PDF

Statistical Properties of Flare Variability, Energy, and Frequency in Low-Mass Stars

  • Chang, Seo-Won;Byun, Yong-Ik
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.1
    • /
    • pp.29.2-29.2
    • /
    • 2011
  • Although stellar flares have a long history of observations, there are few concrete understanding about underlying physical processes and meaningful correlations with other stellar properties. Most of previous observations dealt with only a small number of sample stars, and therefore not sufficient to support generalized statistical studies. Based on one-month long MMT time-series observations of the open cluster M37, we monitored light variations of nearly 2,500 M-dwarf stars and successfully identified 606 flare events from 422 stars. This is a rare attempt to estimate true flare rates and properties among many stars of the same age and mass group. For each flare, we considered both observational and physical parameters including flare shape, duration before and after the peak, baseline magnitude before and after the peak, peak magnitudes, total energy and peak energy, etc. We find significant correlations between some of key parameters over a wide range of energy ($Er=10^{32}{\sim}10^{36}ergs$). For instance, regardless of stellar luminosities, the energy power spectrum of flares can be approximated by a power law (${\beta}=0.83-0.97$). This suggests that flares follow similar physical mechanisms for atmospheric heating and cooling among these low-mass stars. From this MMT data set, we derived an average flaring rate of $0.019 hr^{-1}$ among flare stars and $0.003 hr^{-1}$ for all M-dwarf candidates. We will report the details of our analysis and discuss physical implications.

  • PDF