• 제목/요약/키워드: Starch mutant

검색결과 52건 처리시간 0.027초

Selection of the Constitutive Mutant of Bacillus firmus var. alkalophilus and its Characteristics of Cydodextrin Glucanotransferase Production

  • Lee, Yong-Hyun;Kim, Chan;Lee, Yong-Hyun
    • Journal of Microbiology and Biotechnology
    • /
    • 제5권2호
    • /
    • pp.61-67
    • /
    • 1995
  • To investigate the role of induction on CGTase production for alkalophilic Bacillus firm us var. alkalophilus H609, the constitutive mutants that form a halo around its colonies at non-inducible AG agar media containing amylose and glucose were selected. The selected constitutive mutants could produce CGTase in the range of 18.9 to 28.8 units/ml $\cdot A_{600}$ in the alkaline basal medium, and finally a constitutive mutant Bacillus firmus var. alkalophilus CM46 was selected. The constitutive nature of CM46 was also confirmed in protein level using SDS-PAGE. The effects of induction and catabolite repression for both parent strain Bacillus firmus var. alkalophilus H609 and constitutive mutant CM46 were also compared by adding soluble starch and glucose during cultivation. The selected mutant CM46 was a non-inducible but a catabolite regulated type mutant. Even though inductive regulation was released, the specific CGTase activity defined as CGTase activity per cell concentration was not increased compared with that of parent strain. The cell growth and CGTase production patterns of constitutive mutant Bacillus firmus var. alkalophilus CM46 were compared with the parent strain to identify CGTase production characteristics.

  • PDF

Role of plastidic glucose transporter in source metabolism of Arabidopsis

  • Lee, Youn-Hyung;Hong, Soon-Won;Lee, Jang-Wook;Bhoo, Seong-Hee;Jeon, Jong-Seong;Hahn, Tae-Ryong
    • 한국식물생명공학회:학술대회논문집
    • /
    • 한국식물생명공학회 2005년도 추계학술대회 및 한일 식물생명공학 심포지엄
    • /
    • pp.9-21
    • /
    • 2005
  • To study the biochemical and physiological role of the plastidic glucose transporter (pGlcT) in carbohydrate metabolism, we characterized transgenic plants with mutations in the pGlcT gene (GT), gt-1 and gt-2, as well double mutants of GT and the maltose transporter (MEX1) and GT and the triose phosphate/phosphate translocator (TPT), GT and the cytosolic fructose-1,6-bisphosphatase gene (cFBP), and MEX1 and TPT, gt-1/mex2, gt-1/tpt-2, gt-1/cfbp-1, mex1-1/tpt-2, respectively. Compared to the wild type, all mutants except the gt-1/cfbp-1 mutant lines displayed higher starch accumulation and higher levels of maltose. Starch accumulation is due to a decrease in starch turnover, leading to an imbalance between the rates of synthesis and degradation. Sucrose levels of gt alleles were higher than those in wild-type plants during the light period, suggesting possible nightly supplementation via the maltose transport pathway to maintain proper carbohydrate partitioning in the plant leaves. The gt plants displayed less growth retardation than mex1-1 mutant and gt-1/mex2 double mutant displayed accumulativesevere growth retardation as compared to individual gt-1 and mex1-1 mutants, implying that the maltose transporter-mediated pathway is a major route for carbohydrate partitioning at night. The gt-1/tpt-2, mex1-1/tpt-2 and gt-1/cfbp-1 double mutants had retarded growth and low chlorophyll content to differing degrees, indicating that photosynthetic capacity had diminished. Interestingly, the gt-1/tpt-2 line displayed a glucose-insensitive phenotype and higher germination rates than wild type, suggesting its involvement not only in carbon partitioning, but also in the sugar signaling network of the pGlcT and TPT.

  • PDF

Bacillus stearothermophilus의 Cyclomaltodextrin Glucanotransferase를 이용한 감자전분으로부터의 Cyclodextrin 생산 (Cyclodextrin Production from Potato Starch with Bacillus stearothermophilus Cyclomaltodextrin Glucanotransferase)

  • 황진봉;김승호
    • 한국미생물·생명공학회지
    • /
    • 제20권3호
    • /
    • pp.344-347
    • /
    • 1992
  • Bacillus stearothermophilus No.239의 돌연변이주 MNNG 8이 생산하는 CGTase를 사용하여 감자전분을 동시 액화, cyclodextrin(CD) 생산을 하였다. 고농도(30)의 감자전분이 29의 수율로 CD로 전환 되었으며 그 때의 조건은 pH 6.0, $80^{\circ}C$, 4.3mM, $CaCl_2$, $40^{\circ}C$에서 1g의 전분당 3.0 DAU의 CGTase를 첨가하는 것이다.

  • PDF

Morphological Traits of S598A Sweetpotato as an Industrial Starch Crop

  • Kim, Kyung-Moon;Kim, Ji-Yeon;Kim, Jung-Il
    • 한국작물학회지
    • /
    • 제54권4호
    • /
    • pp.422-426
    • /
    • 2009
  • Sweetpotato is one of the important starch crops, current more considered as an industrial crop rather than food because it has higher starch content (over 80% of biomass), it is used for bio resources for industrial area. In this study, we generated S598A (a mutant gene of oat phytochrome A) sweetpotato plant using Agrobacterium-transformation method. Morphological characteristics of S598A plant were compared with the wild type sweetpotato, S598A had darker green leaves, increased chlorophyll content higher than to two-fold, delayed leaf senescence, shorter plant height (60% shorter than that of the wild type), more number of leaves and petioles about 1.8-fold, shorter petiole length (30% shorter), 1.2-fold more branches and 1.6-fold thicker stem diameters. From this study, S598A plants with such phenotypic characteristics might be able to use the solar energy efficiently, to have increased tolerance to biotic and abiotic stresses and finally to increase productivity (not only starch yield but also root biomass yield). S598A sweetpotato lines are under field trials.

Arabidopsis AMY1 expressions and early flowering mutant phenotype

  • Jie, Wang;Dashi, Yu;XinHong, Guo;Xuanming, Liu
    • BMB Reports
    • /
    • 제42권2호
    • /
    • pp.101-105
    • /
    • 2009
  • The homozygous T-DNA mutant of the AMY1 gene in Arabidopsis was identified and importantly, shown to cause an early flowering phenotype. We found that the disruption of AMY1 enhanced expression of CO and FT. The expression analyses of genes related to starch metabolism revealed that expression of the AGPase small subunit APS1 in the wild type was higher than in the amy1 mutant. However, there were no significant differences in expression levels of the AGPase large subunit genes ApL1, AMY2, or AMY3 between wild type and the amy1 mutant. Expression profiling showed that AMY1 was highly expressed in leaves, stems, and flowers, and expressed less in leafstalks and roots. Furthermore, the level of AMY1 mRNA was highly elevated with age and in senescing leaves. RT-PCR analyses showed that the expression of AMY1 was induced by heat shock, GA, and ABA, while salt stress had no apparent effect on its expression.

Isolation and characterization of a protease deficient mutant of Aspergillus niger

  • 정혜종;이미애;박승문;김대혁
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2001년도 추계학술발표대회
    • /
    • pp.89-92
    • /
    • 2001
  • Aspergillus niger has been used as a host system to express many heterologous proteins. It has various advantages over other expression systems in that it is a small eukaryotic GRAS (Generally Recognized aS Safe) organism with a capacity of secreting large amount of foreign proteins. However, it has been known that the presence of an abundant protease is a limiting factor to express a heterologous protein. The proteases deficient mutants of A. niger were obtained using UV -mutagenesis. A total of 1 ${\times}$ $10^5$ spores were irradiated with 10-20% survival dose of UV, 600J/M2 at 280nm, and the resulting spores were screened on the casein -gelatin plates. Ten putative protease deficient mutants were further analyzed on the starch plates to differentiate the pro from the secretory mutant. An endogenous extracellular enzyme, glucose oxidase, was also examined to confirm that the mutant phenotype was due to the proteases deficiency rather than the mutation in the secretory pathway. The reduced proteolytic activity was measured using SDS-fibrin zymography gel, casein degradation assay, and bio-activity of a supplemented hGM -CSF (human Granulocyte-Macrophage Colony Stimulating Factor). Comparing with the wild type strain, less than 30 % of proteolytic activity was observed in the culture filtrate of the protease deficient mutant (pro -20) without any notable changes in cell growth and secretion.

  • PDF

Aspergillus coreanus NR 15-1 과 Aspergillus oryzae NR 2-5의 원형질체 형성의 최적조건 (Optimal Conditions of Protoplast Formation of Aspergillus coreanus NR 15-1 and Aspergilus oryzae NR 2-5)

  • 정혁준;유대식
    • 한국미생물·생명공학회지
    • /
    • 제29권1호
    • /
    • pp.12-17
    • /
    • 2001
  • Aspergil-lus coreanus NR-15 and Aspergilus oryzae NR-2-5 from traditional Korean Nuruk were selected as parental strains producing starch hydrolysis enzyme. Xll(Arginine-) mutant from A. coreanus NR 15-1 showed high glu-doamylase activity and total acid productivity. Z6(Adenine-) mutant from A. oryzae NR2-5 showed the highest $\alpha$-amylase activity. Therefore, both XII and Z6 mutants were selected and investigated for the optimal conditions of protoplast formation for protoplast fusion. Mixture of equal amount of cellulase and driselase(10mg/ml each) was the most effective as lytic enzymes. The optimal pH and temperature for protoplast formation were 5.0 and $30^{\circ}C$, respectively. The most effective reaction for protoplast formation time was 4 hours. The maximum of protoplst for- mation of Xll mutant and Z6 mutant were $6.54$\times$10^{7}$ protoplasts/ ml and $3.04$\times$10^{ 7}$ protoplasts/ml, and the regen-eration frequencies of the protoplasts were 11.3% and 11.6%, respectively. The size of the protoplasts from X11 and Z6 mutants were 3~6 $\mu\textrm{m}$ and 4~9$\mu\textrm{m}$, respectively.

  • PDF

Role of Val289 Residue in the $\alpha$-Amylase of Bacillus amyloliquefaciens MTCC 610: An Analysis by Site Directed Mutagenesis

  • Priyadharshini, R.;Hemalatha, D.;Gunasekaran, P.
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권3호
    • /
    • pp.563-568
    • /
    • 2010
  • The Val289 residue in the $\alpha$-amylase of Bacillus amyloliquefaciens, which is equivalent to the Ala289 and Val286 residues in the $\alpha$-amylases of B. stearothermophilus and B. licheniformis, respectively, was studied by site-directed mutagenesis. This residue was substituted with 10 different amino acids by random substitution of the Val codon. In these mutant $\alpha$-amylases, Val289 was substituted with Ile, Tyr, Phe, Leu, Gly, Pro, Ser, Arg, Glu, and Asp. Compared with the wild-type $\alpha$-amylase, the mutant $\alpha$-amylase Val289Ile showed 20% more hydrolytic activity, whereas Val289Phe and Val289Leu showed 50% lesser activity. On the other hand, the mutant $\alpha$-amylases Val289Gly, Val289Tyr, Val289Ser, and Val289Pro showed less than 15% activity. The substitution of Val289 with Arg, Asp, or Glu resulted in complete loss of the $\alpha$-amylase activity. Interestingly, the mutant $\alpha$-amylase Val289Tyr had acquired a transglycosylation activity, which resulted in the change of product profile of the reaction, giving a longer oligosaccharide.

Characteristics of Endosperm Starch of the Rice Mutant Lines Induced by Sodium Azide

  • Shin, Young-Seop;Park, Chlul-Soo;Seo, Yong-Weon;Jeung, Ji-Ung
    • 한국육종학회지
    • /
    • 제41권2호
    • /
    • pp.84-91
    • /
    • 2009
  • Rice consumption per capta, in South Korea, has been decreased dramatically, owing to the changes of living patterns. Because of not only the major energy source of Korean people but also major income source of Korean farmers, diversifying end-use-quality of rice has been demanded. To the context, 'Suweon 472', a high yielding and early mature japonica line and released as 'Namilbyeo' to framers in 2002, was treated with a chemical mutagen, Sodium Azide to find endosperm mutant types. A total of nine endosperm mutat lines, including five waxy, one dull, two floury, and one white core type, were identified from the 3,542 mutatagen treated lines. Amylose contents, iodine reaction, disintegration in alkali solution, gelatinization in urea solution and amylogram properties of those nine endosperm mutant lines were evaluated to address the possibility as new genetic materials for diversifying rice quality of Korean japonica cultivars. All embryo mutants were clearly differentiated from their wild type, 'Suweon 472', in terms of physic-chemical properties evaluated. The endosperm mutant lines would be very useful in expanding untiliztation of rice through opening new rice markets of processed foods from Korean japonica rice.

Improvement of Cellulolytic Activity of Pleurotus florida through Radiation Mutagenesis

  • Sathesh-Prabu, Chandran;Lee, Young-Keun
    • 방사선산업학회지
    • /
    • 제6권2호
    • /
    • pp.181-188
    • /
    • 2012
  • A mushroom mutant with increased cellulolytic activity was developed through radiation mutagenesis. The homogenized hypha suspension of Pleurotus florida was exposed to gamma radiation ($^{60}Co$, AECL) at the dose of $LD_{99}$ (0.51 kGy, $D_{10}$; 0.26 kGy). Among 16 mutants, Pf CM4 showed 17.24% more cellulolytic activity than the wild type (p<0.05). It was observed that Pf CM4 can utilize all kinds of carbon sources tested for their mycelia growth. Starch, xylan, and glucose favourably supported the radial mycelia extension. Yeast extract and $NH_4NO_3$ have been recorded as the best organic and inorganic nitrogen sources, respectively. Pf CM4 was found to grow significantly faster, even at high temperature ($30^{\circ}C$), than wild type (p<0.05), and the optimal pH was 5.5~6.5. This study reveals that the mutant Pf CM4 could be employed for the effective recycling of cellulosic wastes, in addition to mushroom farming.