Browse > Article
http://dx.doi.org/10.4014/jmb.091O.10002

Role of Val289 Residue in the $\alpha$-Amylase of Bacillus amyloliquefaciens MTCC 610: An Analysis by Site Directed Mutagenesis  

Priyadharshini, R. (Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University)
Hemalatha, D. (Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University)
Gunasekaran, P. (Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.3, 2010 , pp. 563-568 More about this Journal
Abstract
The Val289 residue in the $\alpha$-amylase of Bacillus amyloliquefaciens, which is equivalent to the Ala289 and Val286 residues in the $\alpha$-amylases of B. stearothermophilus and B. licheniformis, respectively, was studied by site-directed mutagenesis. This residue was substituted with 10 different amino acids by random substitution of the Val codon. In these mutant $\alpha$-amylases, Val289 was substituted with Ile, Tyr, Phe, Leu, Gly, Pro, Ser, Arg, Glu, and Asp. Compared with the wild-type $\alpha$-amylase, the mutant $\alpha$-amylase Val289Ile showed 20% more hydrolytic activity, whereas Val289Phe and Val289Leu showed 50% lesser activity. On the other hand, the mutant $\alpha$-amylases Val289Gly, Val289Tyr, Val289Ser, and Val289Pro showed less than 15% activity. The substitution of Val289 with Arg, Asp, or Glu resulted in complete loss of the $\alpha$-amylase activity. Interestingly, the mutant $\alpha$-amylase Val289Tyr had acquired a transglycosylation activity, which resulted in the change of product profile of the reaction, giving a longer oligosaccharide.
Keywords
Bacillus amyloliquefaciens; $\alpha$-amylase; site-directed mutagenesis; starch hydrolysis; transglycosylation;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Janecek, S. 2002. How many conserved sequence regions are there in the $\alpha$-amylase family? Biologia 57 (Suppl. 11): 29-41.
2 MacGregor, E. A. 2005. An overview of clan GH-H and distantly-related families. Biologia 60 (Suppl. 16): 5-12.
3 Nakajima, R., T. Imanaka, and S. Aiba. 1985. Nucleotide sequence of the Bacillus stearothermophilus alpha-amylase gene. J. Bacteriol. 163: 401-406.
4 Rivera, M. H., M. A. Lopez, X. Soberon, and G. Saab-Rincon. 2003. $\alpha$-Amylase from Bacillus licheniformis mutants near to the catalytic site: Effects on hydrolytic and transglycosylation activity. Protein Eng. 16: 505-514.   DOI
5 Takkinen, K., R. F. Pettersson, N. Kalkkinen, I. Palva, H. Soederlund, and L. Kaeaeriaeinen. 1983. Amino acid sequence of alpha-amylase from Bacillus amyloliquefaciens deduced from the nucleotide sequence of the cloned gene. J. Biol. Chem. 258: 1007-1013.
6 Svensson, B., M. T. Jensen, H. Mori, K. S. Bak Jensen, I. Bnsager, et al. 2002. Fascinating facets of function and structure of amylolytic enzymes of glycoside hydrolase family 13. Biologia 57 (Suppl. 11): 5-19.
7 Yuuki, T., T. Nomura, H. Tezuka, A. Tsuboi, H. Yamagata, N. Tsukagoshi, and S. Udaka. 1985. Complete nucleotide sequence of a gene coding for heat- and pH-stable alpha amylase of Bacillus licheniformis: Comparison of the amino acid sequences of three bacterial liquefying alpha-amylases deduced from the DNA sequences. J. Biochem. 98: 1147-1156.
8 Takata, H., T. Kuriki, S. Okada, Y. Takesada, M. Iizuka, N. Minamiura, and T. Imanaka. 1992. Action of neopullulanase. Neopullulanase catalyzes both hydrolysis and transglycosylation at alpha-(1,4) and alpha-(1,6)-glucosidic linkages. J. Biol. Chem. 267: 18447-18452.
9 Igarashi, K., Y. Hatada, H. Hagihara, K. Saeki, M. Takaiwa, T. Uemura, et al. 1998. Enzymatic properties of a novel liquefying $\alpha$-amylase from an alkaliphilic Bacillus isolate and entire nucleotide and amino acid sequences. Appl. Environ. Microbiol. 64: 3282-3289.
10 Schwede, T., J. Kopp, N. Guex, and M. C. Peitsch. 2003. SWISS-MODEL - An automated protein homology-modeling server. Nucleic Acids Res. 31: 3381-3385.   DOI
11 Thompson, J. D., T. J. Gibson, F. Plewniak, F. Jeanmougin, and D. G. Higgins. 1997. The ClustalX Windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24: 4876-4882.
12 Saab-Rincon, G., R. G. Del, R. I. Santamaria, M. A. Lopez, and X. Soberon. 1999. Introducing transglycosylation activity in a liquefying $\alpha$-amylase. FEBS Lett. 453: 100-106.   DOI
13 Pandey, A., P. Nigam, C. R. Soccol, V. T. Soccol, D. Singh, and R. Mohan. 2000. Advances in microbial amylases. Biotechnol. Appl. Biochem. 31: 135-152.   DOI   ScienceOn
14 Henrissat, B. 1991. A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem. J. 280: 309-316.
15 DeLano, W. L. 2003. PyMOL Reference Manual. DeLano Scientific LLC, San Carlos, CA.
16 Kuriki, T., H. Kaneko, M. Yanase, H. Takata, J. Shimada, S. Handa, T. Takada, H. Umeyama, and S. Okada. 1996. Controlling substrate preference and transglycosylation activity of neopullulanase by manipulating steric and hydrophobicity in active center. J. Biol. Chem. 271: 17321-17329.   DOI
17 Arnold, K., L. Bordoli, J. Kopp, and T. Schwede. 2006. The SWISS-MODEL Workspace: A Web-based environment for protein structure homology modelling. Bioinformatics 22: 195-201.   DOI   ScienceOn
18 Miller, L. H. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 246-248.
19 Guex, N. and M. C. Peitsch. 1997. SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis 18: 2714-2723.   DOI   ScienceOn