• Title/Summary/Keyword: Star excursion balance test

Search Result 24, Processing Time 0.025 seconds

Spiral Taping Improves Performance on Star Excursion Balance Test in Individuals with Unilateral Chronic Ankle Instability

  • Bae, Young-Sook
    • The Journal of Korean Physical Therapy
    • /
    • v.28 no.6
    • /
    • pp.376-380
    • /
    • 2016
  • Purpose: This study was to investigate the short-term effects of spiral taping (ST) on performance on the star excursion balance test (SEBT) in individuals with unilateral chronic ankle instability (CAI). Methods: This study was single-group pre - post measures experimental design. The subjects with CAI were 39 (range, 20-31 years; male 16, females 23) were enrolled in the study. The discomfort had in unilateral ankle and Cumberland ankle instability score was 19.56 (${\pm}3.29$). Spiral tape (a width of 3 mm) was applied $3{\times}4$ cross shape on medial malleolus, lateral malleolus and dorsal of talocural joint of unstable ankle. SEBT was measured baseline and 30 min later in stable ankle and unstable ankle. Results: SEBT showed significantly improved after applying the ST (p<0.05, ES=0.74) on unstable ankle. In comparison the difference of stable and unstable ankle, between the pretest and posttest were significant differences (p<0.01, ES=1.88). Conclusion: These results indicated that ST improves performance on the SEBT. Therefore, it suggests that ST may be a suitable intervention to dynamic balance in patients with CAI.

Effect of Different Rest Intervals on Ankle Kinematics during a Dynamic Balance Task

  • Kwon, Yong Ung
    • Korean Journal of Applied Biomechanics
    • /
    • v.28 no.3
    • /
    • pp.193-197
    • /
    • 2018
  • Objective: The relationship between the rest intervals during physical tasks and performance enhancement has been studied. However, whether or not different rest intervals would result in altered multiplanar ankle kinematics during performance of the Star Excursion Balance Test (SEBT) is unknown. Method: Fifteen healthy subjects (7 males and 8 females) without a history of ankle injuries were participated in this study. 3 rest intervals of 10, 20, and 40 seconds were used during the current study. Three visits were required in order to complete the 3 rest intervals. Variables of interest included dorsiflexion (DF) excursion, tibial internal rotation (TIR), and eversion (EV) excursions. The means of ankle angular excursions were compared across the 3 directions in the 3 rest interval groups. Results: There were no significant main effects for any variables between restintervals. However, DF excursion in the anteromedial (AM) direction was greaterthan in both the medial (M) and posteromedial (PM) directions and was greater in the M direction compared to the PM direction. TIR excursion in the AM direction was less than in both the M and PM directions. Conclusion: Different rest intervals ranging from 10 to 40 seconds did not influence ankle angular excursions during the SEBT in a healthy population. However, our results suggest that multiplanar motion is necessary during the SEBT and differs depending on the direction of movement.

The Effect of Strength Training Targeting Medial Quadriceps and Hamstrings on Dynamic Balance (내측 사두거근 및 햄스트링근 강화 훈련이 동적 균형 능력에 미치는 영향 )

  • Jiyoung Jeong;Choongsoo S. Shin
    • Korean Journal of Applied Biomechanics
    • /
    • v.33 no.2
    • /
    • pp.45-51
    • /
    • 2023
  • Objective: The aim of this study was to examine the effect of strength training targeting medial quadriceps/hamstrings and non-targeting strength training on dynamic balance. Method: A total of 51 healthy subjects were randomly assigned to control, targeting strength training, or non-targeting training groups. To measure the dynamic balance, the star excursion balance test (SEBT) was performed before and after training. The SEBT parameters were compared using repeated measures ANOVA, and post-hoc paired t test at a significance level of 0.05. Results: Greater anterior (p= .011), anteromedial (p= .001), medial (p< .001), lateral (p< .001), and anterolateral (p= .001) reach distances were found between pre- and post-training in the strength training targeting medial thigh muscles group. Only greater lateral reach distance was found after non-targeting strength training (p= .029). In addition, no differences were found for any SEBT scores in the control group. Conclusion: Strength training targeting medial quadriceps and hamstrings can improve the dynamic balance, thereby it positively affected in lower extremity injury risk, whereas non-targeting strength training rarely changes the dynamic balance.

Comparison Kinematic Patterns between the Star Excursion Balance Test and Y-Balance Test in Elite Athletes

  • Ko, Jupil
    • Korean Journal of Applied Biomechanics
    • /
    • v.27 no.3
    • /
    • pp.165-169
    • /
    • 2017
  • Objective: The Star Excursion Balance Test (SEBT) and Y-Balance Test (YBT) have been commonly applied to measure dynamic postural stability ability. These two tests are utilized interchangeably in various settings. However, they could in fact require different movements to assess dynamic postural stability, as one uses a platform and different measuring techniques than the other. The purpose of this study was to determine if there was a significant difference in the kinematic patterns in physically active population while performing the SEBT and the YBT. Method: Seventy participants performed in the Anterior (AN), Posteromedial (PM), and Posterolateral (PL) directions of the SEBT and the YBT. The kinematics of hip, knee, and ankle in sagittal plane was calculated and analyzed. Paired-sample t-tests were performed to compare joint angular displacement in the ankle, knee, and hip between the SEBT and the YBT. Results: Significant differences in angular displacement at the hip, knee, and ankle joints in the sagittal plane between performance on the SEBT and on the YBT were observed. Conclusion: Clinicians and researchers should not apply these dynamic postural control tasks interchangeably from one task to another. There appear to be kinematic pattern differences between tests in healthy physical active population.

Effects of Using a Mobile Phone on Postural Control (휴대전화 이용이 자세조절에 미치는 영향)

  • Won, Jong-Im
    • Physical Therapy Korea
    • /
    • v.19 no.3
    • /
    • pp.61-71
    • /
    • 2012
  • In daily activities, people often perform two or more tasks simultaneously. This is referred to as dual-tasking or multi-tasking. The purpose of this study was to examine the effects of performing dual tasks while using a mobile phone on static and dynamic postural stability. Twenty-four subjects were asked to stand on a force plate and then instructed to perform a balance task only (BT), a balance task while listening to music (BTL), a balance task while talking on the mobile phone (BTT), and a balance task while sending text messages (BTS). We used the BioRescue$^{(R)}$ to measure postural sway and limit of stability for static and dynamic postural stability. Also the star excursion balance test (SEBT) was used to measure dynamic postural stability. A one-way ANOVA with repeated measures was used to compare the effects of the BT, BTL, BTT, and BTS. The Bonferroni's post hoc test was used to determine the differences among four tasks. Carrying out the BTS significantly decreased the limit of stability compared with carrying out the BT, BTL, and BTT (p<.05). In limit of stability, total surface area of BTT was more significantly decreased than that of BT and total surface area of BTS was more decreased than that of BT, BTL and BTT (p<.05). In the SEBT, the BTS displayed significantly smaller reach distance values compared with the BT or BTL (p<.05). These findings suggest that performing the balance task while sending text message on the mobile phone decreases dynamic postural stability, whereas performing the same task while listening to music using the mobile phone does not. Therefore, it requires more attention to maintain dynamic balance while sending text messages.

Effect of 8 Direction Incline and Rotation Exercise on Pain and Dynamic Balance in the Patients with Chronic Low Back Pain (8방향 경사와 회전 운동이 만성요통환자의 통증과 동적균형에 미치는 영향)

  • Goo, Bong-Oh;Park, Min-Chull;Song, Yoo-Yik;Cho, Ye-Rim
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.9
    • /
    • pp.285-292
    • /
    • 2010
  • The purpose of this study is to investigate the effect of 8 direction incline and rotation exercise on pain and dynamic balance in the patients with chronic low back pain(CLBP). 20 patients who were diagnosed with CLBP were included for the study. 10 patients(experimental group) were treated by modality{Hot Pack(H/P), Transcutaneous Electric Nerve Stimulation(TENS), Ultra Sound(U/S)} and then performed 8 direction incline and rotation exercise. The other 10 patients(control group) were only treated by modality. The therapeutic intervention was taken three times a week for 6 weeks. Dynamic balance was assessed by Star Excursion Balance Test(SEBT) and pain was assessed by Visual Analog Scale(VAS). VAS scores of both groups were decreased. However, the experimental group was more significantly decreased than the control group. The dynamic balance of both groups was significantly increased in anterior, posterior, medial, lateral direction. But experimental group was more significantly increased than the control group. In conclusion, 8 direction incline and rotation exercise was effective on pain and dynamic balance in CLPB.

The Effects of Toe-Tap Exercise on Dynamic Balance and Muscle Activity of Gluteus Maximus (토탭 운동이 동적균형과 큰볼기근의 근활성에 미치는 영향)

  • Kwak, Hye-yeon;Kim, Hyun-mok;Yun, Gyeong-a;Lee, Gyu-hwan;Goo, Bong-oh
    • Journal of Korean Physical Therapy Science
    • /
    • v.26 no.1
    • /
    • pp.54-60
    • /
    • 2019
  • Background: This study hypothesized that increased muscle activity and balancing ability of the gluteus maximus during toe-tap exercise. Design: Cross sectional Study. Methods: After hearing the explanation of the experiment, the subjects performed a Star excursion balance test and measured the Maximum Voluntary Isomeric Contraction (MVIC). After toe-tap exercise, the MVIC was measured again and the Star excursion balance test was measured. Results: There was no significant difference in activity of gluteus muscle before and after the toe-tap exercise. There was a significant difference in the balance ability in the lateral, posterolateral, and posterior sides of the non-superior foot, but there was no significant difference in the anterior, anterolateral, posteromedial, medial, and anteromedial sides. In the case of superior foot, there were significant differences in six directions, with the exception of anterolateral and lateral sides. Conclusion: The pelvic stabilizing "gluteus maximus" exercises for balance, which is currently on the table, has many high-level exercises that are hard to do unless you're an athlete. But the Toe-tap exercise is also possible for the elderly and weak women.

Comparison of postural control between subgroups of persons with nonspecific chronic low back and healthy controls during the modified Star Excursion Balance Test

  • Shallan, Amjad;Lohman, Everett;Alshammari, Faris;Dudley, Robert;Gharisia, Omar;Al-Marzouki, Rana;Hsu, Helen;Daher, Noha
    • Physical Therapy Rehabilitation Science
    • /
    • v.8 no.3
    • /
    • pp.125-133
    • /
    • 2019
  • Objective: To compare the postural control between non-specific chronic low back pain (NSCLBP) subgroups and healthy people during dynamic balance performance using a modified Star Excursion Balance Test (mSEBT). Design: Cross-sectional study. Methods: Eighteen NSCLBP subjects (9 active extension pattern [AEP], 9 flexion pattern [FP]), and 10 healthy controls were enrolled in this study. All subjects performed mSEBT on their dominant leg on a force plate. Normalized reach distance and balance parameters, including the center of pressure (COP) displacement and velocity, were recorded. Results: There were significant differences in mean reach distances in both posterolateral and posteromedial (PM) reach directions between AEP and healthy subjects (p<0.001) and between FP and healthy subjects (p<0.001). However, there were no significant differences among the three groups in the anterior reach direction. Also, the results showed no significant differences in mean COP variables (velocity and displacement) between pooled NSCLBP and healthy subjects. However, the subjects were reclassified into AEP, FP and healthy groups and the results showed a significant difference in mean COP velocity in the PM direction between AEP and FP subjects (p=0.048), and between AEP and healthy subjects (p=0.024). Conclusions: The findings in this study highlight the heterogeneity of the individuals with NSCLBP and the importance of identifying the homogenous subgroups. Individuals with AEP and FP experience deficits in dynamic postural control compared to healthy controls. In addition, the findings of this study support the concept of the Multidimensional Classification System.

Effects of Manual Mobilization and Self-exercise on Hip Joint Mobility, Body Balance, Sargent Jump and Smash Speed in Elite Badminton Players (엉덩관절 관절가동술과 자가-운동이 엘리트 배드민턴 선수의 관절가동성과 신체균형능력, 점프력, 스매시 속도에 미치는 영향 )

  • Hye-Min Ko;Suhn-Yeop Kim
    • Journal of the Korean Society of Physical Medicine
    • /
    • v.18 no.1
    • /
    • pp.37-50
    • /
    • 2023
  • PURPOSE: This study examined the effects of various interventions for improving the hip joint range of motion on elite badminton players, including body balance ability, jumping power, smash speed, and joint range of motion. METHODS: The study was conducted on elite badminton players belonging to the S badminton team in Yongin, Gyeonggi-do, and the M badminton team in Suwon, Gyeonggi-do. Twenty-one elite badminton players were selected; they were assigned randomly to Experimental Group 1 (n = 11) and Experimental Group 2 (n = 10). Before and after the intervention, the hip joint range of motion, modified star excursion balance test, Sargent jump, and smash speed were measured. In Experimental Group 1, hip joint manual mobilization was applied by a physical therapist, and hip self-exercise performed by the athletes was applied in Experimental Group 2. This intervention was applied once a day, three times a week, for four weeks. RESULTS: A significant increase in the hip joint range of motion (flexion and extension) and modified star excursion balance test (posteromedial direction) was observed in Experimental Group 1 (hip joint mobilization applied group) compared to Experimental Group 2 (hip joint self-exercise applied group) (p < .05). CONCLUSION: When elite level badminton players require improvement in hip flexion and extension range of motion and posteromedial body balance, hip joint mobilization is more effective than hip self-exercise application.

The effect of unstable plate on the ankle joint displacement and dynamic balance ability of female college students wearing high-heeled shoes (불안정 판을 이용한 훈련이 높은 굽 신발을 신은 여자 대학생의 발목관절 변위와 동적균형능력에 미치는 영향)

  • Nam, Taek-Gill;Lee, Ji-Hyun
    • Journal of Convergence for Information Technology
    • /
    • v.7 no.5
    • /
    • pp.31-38
    • /
    • 2017
  • The purpose of this study was to investigate the effect of training using unstable plate on displacement and dynamic balance ability of ankle joints in women college students wearing high heel shoes. Subjects were randomly divided into experimental group and control group. 3D motion analysis was performed while walking 9cm high-heeled shoes and walking 5m. Dynamic balanced ability evaluation was performed. The intervention program was administered to experimental subjects three times a week for four weeks. They performed balance training using unstable plates. There was no intervention in the control group. The results showed that the displacement of the ankle joints in the experimental group after the intervention was decreased overall and the dynamic balance ability was significantly increased. The control group showed little change. As a result, the training using unstable plate stabilizes the ankle joints and improves the dynamic balance ability of the subjects wearing high-heeled shoes.