• Title/Summary/Keyword: Star Observation

Search Result 167, Processing Time 0.029 seconds

THE NEW ECLIPSING POST COMMON-ENVELOPE BINARY SDSS J074548.63+263123.4

  • HEMHA, NIWAT;SANGUANSAK, NUANWAN;IRAWATI, PUJI;DHILLON, VIK;MARSH, TOM R.
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.201-204
    • /
    • 2015
  • The common-envelope process is a complicated phase in binary evolution. A lot of effort has been dedicated to study the common-envelope stage, but many questions related to this process are yet to be answered. If one member of the binary survives the common-envelope phase, the binary will emerge as a white dwarf accompanied by a low-mass main sequence star in close orbit, often referred as a post common-envelope binary (PCEB). SDSS J0745+2631 is among the list of newly found PCEBs from the Sloan Digital Sky Survey (SDSS). This star is proposed to be a strong eclipsing system candidate due to the ellipsoidal modulation in its light curve. In this work, we aim to confirm the eclipsing nature of SDSS J0745+2631 and to determine the stellar and orbital parameters using the software Binary Maker 3.0 (BM3.0). We detected the primary eclipse in the light curve of SDSS J0745+2631 in our follow-up observation from January 2014 using the ULTRASPEC instrument at the Thai National Observatory. The data obtained on 7th and 8th January 2014 in g filter show an evident drop in brightness during the eclipse of the white dwarf, but this eclipse is less prominent in the data taken on the next night using a clear filter. According to our preliminary model, we find that SDSS J0745+2631 hosts a rather hot white dwarf with an effective temperature of 11500K. The companion star is a red dwarf star with a temperature of 3800K and radius of 0.3100 $R_{\odot}$. The red dwarf star almost fills its Roche lobe, causing a large ellipsoidal modulation. The mass ratio of the binary given by the Binary Maker 3.0 (BM3.0) model is M2/M1 = 0.33.

Development of a Period Analysis Algorithm for Detecting Variable Stars in Time-Series Observational Data

  • Kim, Dong-Heun;Kim, Yonggi;Yoon, Joh-Na;Im, Hong-Seo
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.4
    • /
    • pp.283-292
    • /
    • 2019
  • The purpose of this study was to develop a period analysis algorithm for detecting new variable stars in the time-series data observed by charge coupled device (CCD). We used the data from a variable star monitoring program of the CBNUO. The R filter data of some magnetic cataclysmic variables observed for more than 20 days were chosen to achieve good statistical results. World Coordinate System (WCS) Tools was used to correct the rotation of the observed images and assign the same IDs to the stars included in the analyzed areas. The developed algorithm was applied to the data of DO Dra, TT Ari, RXSJ1803, and MU Cam. In these fields, we found 13 variable stars, five of which were new variable stars not previously reported. Our period analysis algorithm were tested in the case of observation data mixed with various fields of view because the observations were carried with 2K CCD as well as 4K CCD at the CBNUO. Our results show that variable stars can be detected using our algorithm even with observational data for which the field of view has changed. Our algorithm is useful to detect new variable stars and analyze them based on existing time-series data. The developed algorithm can play an important role as a recycling technique for used data

Gemini/GMOS Observation of Extended Star Clusters in Dwarf Irregular Galaxy NGC 6822

  • Hwang, Narae;Park, Hong Soo;Lee, Myung Gyoon;Lim, Sungsoon;Hodge, Paul W.;Kim, Sang Chul;Miller, Bryan;Weisz, Daniel
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.55.1-55.1
    • /
    • 2014
  • on the observation with the Gemini Multi-Object Spectrograph on the Gemini-South 8.1 m telescope. The radial velocities of four ESCs do not display any sign of systematic motion, unlike the intermediate age carbon stars in NGC 6822. The ages and metallicities derived using the Lick indices show that the ESCs are old (>=8 Gyr) and metal poor ([Fe/H] <= -1.5). NGC 6822 is found to have both metal poor ($[Fe/H]{\approx}-2.0$) and metal rich ($[Fe/H]{\approx}-0.9$) star clusters within 15' (2 kpc) from the center, whereas only metal poor clusters are observed in the outer halo with r >= 20'(2.6 kpc). Based on the kinematics, old ages, and low metallicities of ESCs, we discuss the possible origin of ESCs and the formation of the outer halo of a small dwarf irregular galaxy NGC6822.

  • PDF

The kinematic properties of stellar groups in the Rosette Nebula: its implication on their formation process

  • Lim, Beomdu;Hong, Jongsuk;Naze, Yael;Park, Byeong-Gon;Hwang, Narae;Lee, Jeong-Eun;Yun, Hyeong-Sik;Park, Sunkyung;Yi, Hee-Weon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.51.1-51.1
    • /
    • 2020
  • The Rosette Nebula is the most actively star-forming region in the Monoceros OB2 association. This region hosts more than three stellar groups, including the most populous group NGC 2244 at the center of the region and the smaller stellar groups around the border of the H II bubble. To trace their formation process, we investigate the kinematic properties of these groups using the Gaia astrometric data and high-resolution spectra taken from observation with Hectochelle on MMT. The proper motions of stars in NGC 2244 show a pattern of radial expansion. The signature of cluster rotation is also detected from their radial velocities. On the other hand, the small groups appear to be physically associated with some clouds at the ridge of the H II region. Among them, the group near the eastern pillar-like gas structure shows the signature of feedback-driven star formation. In this presentation, we will further discuss the formation process and dynamical evolution of the stellar groups in the Rosette Nebula, based on the observation and results of N-body simulations.

  • PDF

A Comparison of Broadcast and Final Orbits on GPS Delays in GPS-VLBI Hybrid Observation

  • Kwak, Younghee;Cho, Jungho;Kondo, Tetsuro;Takiguchi, Hiroshi;Amagai, Jun;Gotoh, Tadahiro;Sekido, Mamoru;Ichikawa, Ryuichi;Kim, Tuhwan;Sasao, Tetsuo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.1 no.1
    • /
    • pp.65-75
    • /
    • 2012
  • We carry out an error analysis of 24-hour global positioning system (GPS)-very long baseline interferometry (VLBI) (GV) hybrid observation data. In this paper, we focus on the impacts of broadcast and final orbits on the GPS delays of the GV hybrid observation by analyzing the residuals, observed - calculated (O-C) values. The residuals show apparent and consistent biases for L1 and L2 signals, respectively. The scatters of the residuals are around a few nanoseconds. The main cause of those observation errors is the absence of the GPS phase and delay calibration system. Most of the satellites show that the differences between the delays, to which broadcast and final orbits are applied, are about 100 times smaller than the current GV hybrid observation errors. We conclude that GPS delays are not greatly affected by orbit accuracies.

Attitude Scenarios of Star Observation for Image Validation of Remote Sensing Satellite (영상검정을 위한 지구관측위성의 별 관측 자세 시나리오 생성 기법)

  • Yu, Ji-Woong;Park, Sang-Young;Lee, Dong-Han
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.9
    • /
    • pp.807-817
    • /
    • 2012
  • An optical payload needs to be validated its image performance after launched into orbit. The image performance was validated by observing star because ground site contains uncertainties caused by atmosphere, time of the year, and weather. Time Delayed and Integration(TDI) technique, which is mostly used to observe the ground, is going to be used to observe the selected stars. A satellite attitude scenario was also developed to observe the selected stars. The scenario is created to enable TDI to operate. Rotation angles of optical payload are determined in order for the selected stars to properly be passed at a desired angular velocity about rotation axis. The result of this research can be utilized to validate the quality of optical payload of a satellite in orbit. In addition, a quaternion for pointing selected stars is calculated minimizing the path from a given arbitrary attitude of satellite.

miniTAO/ANIR Paα SURVEY OF LOCAL LIRGs

  • Tateuchi, Ken;Motohara, Kentaro;Konishi, Masahiro;Takahashi, Hidenori;Kato, Natsuko;Uchimoto, Yuka K.;Toshikawa, Koji;Ohsawa, Ryou;Kitagawa, Yutaro;Yoshii, Yuzuru;Doi, Mamoru;Kohno, Kotaro;Kawara, Kimiaki;Tanaka, Masuo;Miyata, Takashi;Tanabe, Toshihiko;Minezaki, Takeo;Sako, Shigeyuki;Morokuma, Tomoki;Tamura, Yoichi;Aoki, Tsutomu;Soyano, Takeo;Tarusawa, Kenfichi;Koshida, Shintaro;Kamizuka, Takafumi;Nakamura, Tomohiko;Asano, Kentaro;Uchiyama, Mizuho;Okada, Kazushi;Ita, Yoshifusa
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.4
    • /
    • pp.297-298
    • /
    • 2012
  • ANIR (Atacama Near InfraRed camera) is a near infrared camera for the University of Tokyo Atacama 1m telescope, installed at the summit of Co. Chajnantor (5,640 m altitude) in northern Chile. The high altitude and extremely low water vapor (PWV = 0.5 mm) of the site enable us to perform observation of hydrogen $Pa{\alpha}$ emission line at $1.8751{\mu}m$. Since its first light observation in June 2009, we have been carrying out a $Pa{\alpha}$ narrow-band imaging survey of nearby luminous infrared galaxies (LIRGs), and have obtained $Pa{\alpha}$ for 38 nearby LIRGs listed in AKARI/FIS-PSC at the velocity of recession between 2,800 km/s and 8,100 km/s. LIRGs are affected by a large amount of dust extinction ($A_V$~ 3 mag), produced by their active star formation activities. Because $Pa{\alpha}$ is the strongest hydrogen recombination line in the infrared wavelength ranges, it is a good and direct tracer of dust-enshrouded star forming regions, and enables us to probe the star formation activities in LIRGs. We find that LIRGs have two star-forming modes. The origin of the two modes probably come from differences between merging stage and/or star-forming process.

Spectroscopy of Local Starburst Galaxies (가까운 폭발적 항성생성은하의 분광 관측)

  • Lee, Cheolhui;Shim, Hyunjin
    • Journal of the Korean earth science society
    • /
    • v.38 no.3
    • /
    • pp.209-221
    • /
    • 2017
  • We investigate the star formation rate, stellar mass, and gas-phase metallicity of local starburst galaxies with different star formation time scales based on their optical spectra. The observation is made using the longslit spectrograph attached to the 4K CCD on the Bohyunsan Optical Astronomy Observatory 1.8m telescope, targeting 21 Wolf-Rayet galaxies as young starbursts and 13 UV excess galaxies as slightly older starbursts. A Baldwin-Phillips-Terlevich diagram analysis shows that 50% of the observed targets are pure star-forming galaxies while only 15% are classified as Active Galactic Nuclei. Fraction of galaxies that reside in composite region is higher in UV excess galaxies than in Wolf-Rayet galaxies, suggesting that the AGN development requires extra time after the onset of the star formation. Most of the observed starburst galaxies have stellar masses of $10^{9-11}M_{\odot}$ and stellar formation rates of $0.01-100M_{\odot}yr^{-1}$, and their star formation rates are consistent with that of the SDSS star forming main sequence galaxies of similar stellar mass. There is no significant difference between Wolf-Rayet galaxies and UV excess galaxies in terms of the stellar mass and star formation rate. We also see a mass-metallicity relation for local starbursts with slightly lower metallicity for a given stellar mass, which implies the existence of a strong feedback activity due to the star formation in these galaxies.

IMPLICATION OF STELLAR PROPER MOTION OBSERVATIONS ON RADIO EMISSION OF SAGITTARIUS A

  • CHANG HEON-YOUNG;CHOI CHUL-SUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.81-87
    • /
    • 2003
  • It is suggested that a flying-by star in a hot accretion disk may cool the hot accretion disk by the Comptonization of the stellar emission. Such a stellar cooling can be observed in the radio frequency regime since synchrotron luminosity depends strongly on the electron temperature of the accretion flow. If a bright star orbiting around the supermassive black hole cools the hot disk, one should expect a quasi-periodic modulation in radio, or even possible an anti-correlation of luminosities in radio and X-rays. Recently, the unprecedentedly accurate infrared imaging of the Sagittarius A$\ast$ for about ten years enables us to resolve stars around it and thus determine orbital parameters of the currently closest star S2. We explore the possibility of using such kind of observation to distinguish two quite different physical models for the central engine of the Sagittarius A$\ast$, that is, a hot accretion disk model and a jet model. We have attempted to estimate the observables using the observed parameters of the star S2. The relative difference in the electron temperature is a few parts of a thousand at the epoch when the star S2 is near at the pericenter. The relative radio luminosity difference with and without the stellar cooling is also small of order $10^{-4}$, particularly even when the star S2 is near at the pericenter. On the basis of our findings we tentatively conclude that even the currently closest pass of the star S2 is insufficiently close enough to meaningfully constrain the nature of the Sagittarius A$\ast$ and distinguish two competing models. This implies that even though Bower et al. (2002)have found no periodic radio flux variations in their data set from 1981 to 1998, which is naturally expected from the presence of a hot disk, a hot disk model cannot be conclusively ruled out. This is simply because the energy bands they have studied are too high to observe the effect of the star S2 even if it indeed interacts with the hot disk. In other words, even if there is a hot accretion disk the star like S2 has imprints in the frequency range at v $\le$ 100 MHz.

REQUIREMENTS AND FEASIBILITY STUDY OF FPC-G FINE GUIDING IN SPACE INFRARED TELESCOPE, SPICA (대형 적외선 우주망원경 SPICA/FPC-G의 정밀 별추적 요구사항과 타당성 연구)

  • Jeong, Woong-Seob;Lee, Dae-Hee;Pyo, Jeonghyun;Moon, Bongkon;Park, Sung-Joon;Ree, Chang Hee;Park, Youngsik;Han, Wonyong;Nam, Ukwon;Matsumoto, Toshio
    • Publications of The Korean Astronomical Society
    • /
    • v.27 no.5
    • /
    • pp.391-397
    • /
    • 2012
  • The SPICA (SPace Infrared Telescope for Cosmology & Astrophysics) project is a next-generation infrared space telescope optimized for mid- and far-infrared observation with a cryogenically cooled 3m-class telescope. It will achieve the high resolution as well as the unprecedented sensitivity from mid to far-infrared range. The FPC (Focal Plane Camera) proposed by KASI as an international collaboration is a near-infrared instrument. The FPC-S and FPC-G are responsible for the scientific observation in the near-infrared and the fine guiding, respectively. The FPC-G will significantly reduce pointing error down to below 0.075 arcsec through the observation of guiding stars in the focal plane. We analyzed the pointing requirement from the focal plane instruments as well as the error factors affecting the pointing stability. We also obtained the expected performance in operation modes. We concluded that the FPC-G can achieve the pointing stability below 0.075 arcsec which is the requirement from the focal plane instruments.