• Title/Summary/Keyword: Star Observation

Search Result 167, Processing Time 0.032 seconds

Detection of planetary signals in extremely weak central perturbation microlensing events via next-generation ground-based surveys

  • Chung, Sun-Ju;Lee, Chung-Uk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.72.1-72.1
    • /
    • 2013
  • Even though current microlensing follow-up observations focus on high-magnification events due to the high efficiency of planet detection, it is very difficult to do a confident detection of planets in high-magnification events with extremely weak central perturbations (i.e., the fractional deviation is ${\delta}{\leq}0.02$). For the confident detection of planets in the extremely weak central perturbation events, it is needed both the high cadence monitoring and the high photometric accuracy. A next-generation ground-based observation project, KMTNet (Korea Microlensing Telescope Network), satisfies both the conditions. Here we investigate how well planets in high-magnification events with extremely weak central perturbations are detected by KMTNet. First, we determine the probability of occurrence of events with ${\delta}{\leq}0.02$. From this, we find that for ${\leq}100M_E$ planets in the separation of $0.2AU{\leq}d{\leq}20AU$, events with ${\delta}{\leq}0.02$ occur with a frequency of more than 70%, in which d is the projected planet-star separation. Second, we estimate the efficiency of detecting planetary signals in the events with ${\delta}{\leq}0.02$ via KMTNet. We find that for main-sequence and subgiant source stars, ${\geq}1M_E$ planets can be detected more than 50% in a certain range that has the efficiency of ${\geq}10%$ and changes with the planet mass.

  • PDF

Color evolution of HBC 722 in the post-outburst phase

  • Baek, Giseon;Pak, Soojong;Green, Joel D.;Lee, Jeong-Eun;Bae, Kyoung Min;Jeon, Yiseul;Choi, Changsu;Im, Myungshin;Meschiari, Stefano
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.70.2-70.2
    • /
    • 2013
  • We present collections of optical photometry for a pre-main sequence star HBC 722. It showed large amplitude optical outburst (${\Delta}V=4.7$ mag) in 2010 and classified as a FU Orionis type object. We have been observing HBC 722 from 2011 April to 2013 May, using Camera for QUasars in EArly uNiverse (CQUEAN) attached to the 2.1 m Otto Struve telescope at the McDonald Observatory. Time-series monitoring data (minute-scale interval) were obtained in SDSS r, i and z bands to see short-scale behaviors as well as trace the long-term brightness changes after the eruption in 2010. Interestingly, it started to brighten from 2011 early summer and became brighter than the first outburst peak in our 2013 May observation. We expect that the recovering phase would result from re-increase of disk accretion rate, might attribute to distinctive short-scale color features. In this presentation, we report long- and short-timescale optical behaviors of HBC 722 in the post-outburst phase.

  • PDF

The Chemical Composition of V1719 Cyg: δ Scuti Type Star without the Accretion of Interstellar Matter

  • Yushchenko, Alexander V.;Kim, Chulhee;Jeong, Yeuncheol;Doikov, Dmytry N.;Yushchenko, Volodymyr A.;Khrapatyi, Sergii V.;Demessinova, Aizat
    • Journal of Astronomy and Space Sciences
    • /
    • v.37 no.3
    • /
    • pp.157-163
    • /
    • 2020
  • High resolution spectroscopic observation of V1719 Cyg were made at 1.8 meter telescope of Bohyunsan Optical Astronomy observatory in Korea. Spectral resolving power was R=45,000, signal to noise ratio S/N>100. The abundances of 28 chemical elements from carbon to dysprosium were found with the spectrum synthesis method. The abundances of oxygen, titanium, vanadium and elements with Z>30 are overabundant by 0.2-0.9 dex with respect to the solar values. Correlations of derived abundances with condensation temperatures and second ionization potentials of these elements are discussed. The possible influence of accretion from interstellar environment is not so strong as for ρ Pup and other stars with similar temperatures. The signs of accretion are absent. The comparison of chemical composition with solar system r- & s-process abundance patterns shows the enhancement of the photosphere by s-process elements.

Detection of Variable Stars in the Open Cluster M11 Using Difference Image Analysis Pipeline

  • Lee, Chung-Uk;Koo, Jae-Rim;Kim, Seung-Lee;Lee, Jae-Woo;Park, Byeong-Gon;Han, Cheong-Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.27 no.4
    • /
    • pp.289-307
    • /
    • 2010
  • We developed a photometric pipeline to be used for a wide field survey. This pipeline employs the difference image analysis (DIA) method appropriate for the photometry of star dense field such as the Galactic bulge. To verify the performance of pipeline, the observed dataset of the open cluster M11 was re-processed. One hundred seventy eight variable stars were newly discovered by analyzing the light curves of which photometric accuracy was improved through the DIA. The total number of variable stars in the M11 observation region is 335, including 157 variable stars discovered by previous studies. We present the catalogue and light curves for the 178 variable stars. This study shows that the photometric pipeline using the DIA is very useful in the detection of variable stars in a cluster.

AKARI Observation of the North Ecliptic Pole (NEP) Supercluster at z=0.087

  • Ko, Jong-Wan;Im, Myung-Shin;AKARINEP-Wideteam, AKARINEP-Wideteam
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.35 no.1
    • /
    • pp.74.2-74.2
    • /
    • 2010
  • We present a multi-wavelength study of a supercluster in the NEP region at z=0.087, using AKARI (Infrared space telescope) NEP-Wide (5.8 deg2) survey which has obtained an unique IR imaging dataset with contiguous wavelength coverage from 2 to $24{\mu}m$, overcoming the Spitzer limitation of imaging capability at $10-20{\mu}m$. The NEP-Wide survey is also covered in other wavelength such as X-ray, Radio, GALEX UV in the archive, optical (BRI from Maidanak 1.5m and CFHT's MegaPrime), and NIR imaging data (JH from KPNO 2.1m), with nearly 1900 optical spectra, mostly obtained by our group using MMT/Hectospec and WIYN/Hydra. Armed with the multiwavelength datasets, we investigate the connection between IR properties of galaxies and their environments as a tool to understand the evolution of galaxies in a supercluster environment. Specific attention will be given to MIR emission which can trace star formation activities and passive phases right after post-starbursts, and its relation to other wavelength data.

  • PDF

Adaptive Optics in Institute of Optics and Electronics, China

  • Jiang, Wenhan;Ling, Ning
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.08a
    • /
    • pp.3-3
    • /
    • 2000
  • Adaptive Optical (AO) technology can compensate for wave-front errors in real-time to improve image and beam quality. The research and development on AO in China began in 1979. In 1980, the first laboratory on AO in China was established in Institute of Optics and Electronics (IOE), Chinese Academy of Sciences (CAS). Since then several AO systems have been built in this Laboratory. The 19-element system is the first AO system in the world ever used in inertial confinement fusion (ICF) facility in our knowledge. It corrects the static error of this large laser engineering. The 21-element system was firstly tested at the 1.2m telescope of Kunming Observatory in 1990 and then up-dated as an IR AO system installed at the 2.16m telescope of Beijing Observatory. The 37-element system was used with a turbulence cell in Laboratory on Atmospheric Optics in Hefei to conduct elementary research on Atmospheric Optics. The 61-element system for astronomical observation is newly developed. It has been successfully installed at the 1.2m telescope of Kunming Observatory and a laser guide star system will be integrated with the system. A compact AO system using our newly developed miniature DM for high resolution ophthalmic imaging of retina is also being built. The key elements of these AO systems, deformable mirrors and fast-steering mirrors, are all developed in this Laboratory. In this talk, the main configurations of these AO systems, some test results as well as the specifications of these active mirrors will be presented.

  • PDF

CONFIRMATION OF THE EXOPLANET AROUND β GEM FROM THE RV OBSERVATIONS USING BOES

  • Ran, In-Woo;Lee, Byeong-Cheol;Kim, Kang-Min;Mkrtichian, D.E.
    • Journal of The Korean Astronomical Society
    • /
    • v.41 no.3
    • /
    • pp.59-64
    • /
    • 2008
  • To detect exoplanets and study pulsation of K giant stars, we have observed precise RV (radial velocity) of about 55 early K giant (K0 - K4) stars brighter than V = 5 magnitude since 2003 by using BOES, a high resolution Echelle spectrograph attached to the 1.8 m telescope at BOAO (Bohyunsan Optical Astronomy Observatory). We detected periodic RV variation of KO III star $\beta$ Gem (HD 62509) with a period $P\;=\;596.6\;{\pm}\;2.3$ days and a semi-amplitude $K\;=\;44.8\;{\pm}\;0.7\;ms^{-1}$. If we adopt 1.7 $M_{\odot}$ for the mass of $\beta$ Gem, this yields the minimum mass of the companion m sin i = 2.64 $M_{Jupiter}$. Our results agree well with Hatzes et al. (2006) and Reffert et al. (2006), and confirm their discovery of a planetary object around $\beta$ Gem. We also confirmed about 192 minutes short period stellar oscillation found by Hatzes and Zechmeister (2007). This is the first report of exoplanet detection using BOES and demonstrates that the RV observation using BOES is accurate and stable enough to detect exoplanets around bright K giant stars.

N III Bowen Lines and Fluorescence Mechanism in the Symbiotic Star AG Peg

  • Hyung, Siek;Lee, Seong-Jae;Lee, Kang Hwan
    • Journal of Astronomy and Space Sciences
    • /
    • v.35 no.1
    • /
    • pp.7-18
    • /
    • 2018
  • We have investigated the intensities and full width at half maximum (FWHM) of the high dispersion spectroscopic N III emission lines of AG Peg, observed with the Hamilton Echelle Spectrograph (HES) in three different epochs at Mt. Hamilton's Lick Observatory. The earlier theoretical Bowen line study assumed the continuum fluorescence effect, presenting a large discrepancy with the present data. Hence, we analyzed the observed N III lines assuming line fluorescence as the only suitable source: (1) The O III and N III resonance line profiles near ${\lambda}$ 374 were decomposed, using the Gaussian function, and the contributions from various O III line components were determined. (2) Based on the theoretical resonant N III intensities, the expected N III Bowen intensities were obtained to fit the observed values. Our study shows that the incoming line photon number ratio must be considered to balance at each N III Bowen line level in the ultraviolet radiation according to the observed lines in the optical zone. We also found that the average FWHM of the N III Bowen lines was about $5km{\cdot}s^{-1}$ greater than that of the O III Bowen lines, perhaps due to the inherently different kinematic characteristics of their emission zones.

Pulsar observation with KVN

  • Kim, Chunglee;Dodson, Richard;Jung, Taehyun;Sohn, Bong Won
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.52.1-52.1
    • /
    • 2014
  • Radio pulsars are highly magnetized, rapidly rotating neutron stars that emit synchrotron radiation along the magnetic axes at their spin frequencies. Traditionally, pulsar observations have been done at low frequencies (MHz up to a few GHz), since radio pulsar spectrum is known to a power-law with a steep negative spectral index. More recently, high-frequency pulsar observations (several GHz and above) have been made as a broadband spectrometer and fast computers became available. High-frequency pulsar observations will provide information on radio emission mechanism of pulsars in the vicinity of the neutron star surface. There is also huge interest from gravitational-wave and astrophysics community to find a pulsar in the center of our Galaxy. The Korean VLBI Network has three 21-m single dishes in the Korean peninsula. Using KVN's lowest observational frequency of 22-GHz, we performed test observations with the KVN targeting a few selected known, bright pulsars. In addition, we have been developing pulsar pipelines that can be utilized with a VLBI facility using Mark-V. We present a brief introduction of radio pulsars and show data obtained with the KVN.

  • PDF

MOLECULAR LINE OBSERVATION TOWARD POLARIS FLARE

  • Chi Seung-Youp;Park Yong-Sun
    • Journal of The Korean Astronomical Society
    • /
    • v.39 no.1
    • /
    • pp.9-17
    • /
    • 2006
  • In an attempt to investigate star formation activity and statistical properties of clumps of high Galactic latitude clouds (HLCs), we mapped the Polaris Flare region, PF121.3+25.5, in $^{12}CO\;and\;^{13}CO$ J = 1 - 0 using SRAO 6-m telescope and also observed its 12 $^{13}CO$ peak positions in CS J = 2 - 1 with TRAO 14-m telescope. $^{13}CO$ integrated intensity map shows clearly its clumpy structure and the locations of clumps well agree with $^{12}CO$morphology. CS line is not detected toward the 12 $^{13}CO$ peak positions, so we can conclude there are no dense $(\sim10^4\;cm^{-3})$ in this region. We decomposed 105 clumps from $^{13}CO$ map using GAUSSCLUMPS algorithm. The mass of clumps ranges from $7.8\;M_{\odot}\;to\;7.4{\times}10^{-2}\;M_{\odot}$ with a total mass of $66.4\;M_{\odot}$ The mass spectrum follows a power law, dN/dM ${\propto}\;M^{-\alpha}$ with a power index of ${\alpha}=1.91{\pm}0.13$. The virial masses of clumps are in the range of $10{\sim}100M_{LTE}$ and so these clumps are considered to be gravitationally unbound.