• Title/Summary/Keyword: Standing crops

Search Result 202, Processing Time 0.018 seconds

Estimation of Nondestructive Rice Leaf Nitrogen Content Using Ground Optical Sensors (지상광학센서를 이용한 비파괴 벼 엽 질소함량 추정)

  • Kim, Yi-Hyun;Hong, Suk-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.6
    • /
    • pp.435-441
    • /
    • 2007
  • Ground-based optical sensing over the crop canopy provides information on the mass of plant body which reflects the light, as well as crop nitrogen content which is closely related to the greenness of plant leaves. This method has the merits of being non-destructive real-time based, and thus can be conveniently used for decision making on application of nitrogen fertilizers for crops standing in fields. In the present study relationships among leaf nitrogen content of rice canopy, crop growth status, and Normalized Difference Vegetation Index (NDVI) values were investigated. We measured Green normalized difference vegetation index($gNDVI=({\rho}0.80{\mu}m-{\rho}0.55{\mu}m)/({\rho}0.80{\mu}m+{\rho}0.55{\mu}m)$) and NDVI($({\rho}0.80{\mu}m-{\rho}0.68{\mu}m)/({\rho}0.80{\mu}m+{\rho}0.68{\mu}m)$) were measured by using two different active sensors (Greenseeker, NTech Inc. USA). The study was conducted in the years 2005-06 during the rice growing season at the experimental plots of National Institute of Agricultural Science and Technology located at Suwon, Korea. The experiments carried out with randomized complete block design with the application of four levels of nitrogen fertilizers (0, 70, 100, 130kg N/ha) and same amount of phosphorous and potassium content of the fertilizers. gNDVI and rNDVI increased as growth advanced and reached to maximum values at around early August, G(NDVI) were a decrease in values of observed with the crop maturation. gNDVI values and leaf nitrogen content were highly correlated at early July in 2005 and 2006. On the basis of this finding we attempted to estimate the leaf N contents using gNDVI data obtained in 2005 and 2006. The determination coefficients of the linear model by gNDVI in the years 2005 and 2006 were 0.88 and 0.94, respectively. The measured and estimated leaf N contents using gNDVI values showed good agreement ($R^2=0.86^{***}$). Results from this study show that gNDVI values represent a significant positive correlation with leaf N contents and can be used to estimate leaf N before the panicle formation stage. gNDVI appeared to be a very effective parameter to estimate leaf N content the rice canopy.

The Change of Phytoplankton Community Structure and Water Quality in the Juksan Weir of the Yeongsan River Watershed (영산강수계 죽산보의 식물플랑크톤과 이화학적 변화)

  • Son, Misun;Chung, Hyeon Su;Park, Chang Hee;Park, Jong-hwan;Lim, Cheahong;Kim, Kyunghyun
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.4
    • /
    • pp.591-600
    • /
    • 2018
  • The objective of this study was to determine the changes in phytoplankton and long-term water quality of Juksan-Weir in Yeongsan River that took place between April 2010 and December 2015. The number of species used in this study was 288, which consisted of 6% of Cyanophyta, 26% of Bacillariophyta, 53% of Chlorophyta and the others (15%). The standing crops of phytoplankton ranged from $500cells{\cdot}mL^{-1}-29,950cells{\cdot}mL^{-1}$ with an average of $7,885cells{\cdot}mL^{-1}$. At the two site, 20 dominant genera of found. The dominant genera were 6 of Bacillariophyta, 6 of Cyanophyta, 7 of Chlorophyta and 1 of Cryptophyta. The most dominant genus among the phytoplankton was Stephanodiscus sp. (Total 59%, each 54% and 63%). The most dominant genus among the Cyanophyta was Microcystis sp., which had a cell abundance ratio of 17%. The results of two sites were 21% and 13%, and the upstream was higher than the downstream.