DOI QR코드

DOI QR Code

The Change of Phytoplankton Community Structure and Water Quality in the Juksan Weir of the Yeongsan River Watershed

영산강수계 죽산보의 식물플랑크톤과 이화학적 변화

  • Son, Misun (Yeongsan River Environment Research Center, National Institute of Environmental Research) ;
  • Chung, Hyeon Su (Yeongsan River Environment Research Center, National Institute of Environmental Research) ;
  • Park, Chang Hee (Yeongsan River Environment Research Center, National Institute of Environmental Research) ;
  • Park, Jong-hwan (Yeongsan River Environment Research Center, National Institute of Environmental Research) ;
  • Lim, Cheahong (Yeongsan River Environment Research Center, National Institute of Environmental Research) ;
  • Kim, Kyunghyun (Yeongsan River Environment Research Center, National Institute of Environmental Research)
  • 손미선 (국립환경과학원 영산강물환경연구소) ;
  • 정현수 (국립환경과학원 영산강물환경연구소) ;
  • 박창희 (국립환경과학원 영산강물환경연구소) ;
  • 박종환 (국립환경과학원 영산강물환경연구소) ;
  • 임채홍 (국립환경과학원 영산강물환경연구소) ;
  • 김경현 (국립환경과학원 영산강물환경연구소)
  • Received : 2018.10.10
  • Accepted : 2018.12.10
  • Published : 2018.12.31

Abstract

The objective of this study was to determine the changes in phytoplankton and long-term water quality of Juksan-Weir in Yeongsan River that took place between April 2010 and December 2015. The number of species used in this study was 288, which consisted of 6% of Cyanophyta, 26% of Bacillariophyta, 53% of Chlorophyta and the others (15%). The standing crops of phytoplankton ranged from $500cells{\cdot}mL^{-1}-29,950cells{\cdot}mL^{-1}$ with an average of $7,885cells{\cdot}mL^{-1}$. At the two site, 20 dominant genera of found. The dominant genera were 6 of Bacillariophyta, 6 of Cyanophyta, 7 of Chlorophyta and 1 of Cryptophyta. The most dominant genus among the phytoplankton was Stephanodiscus sp. (Total 59%, each 54% and 63%). The most dominant genus among the Cyanophyta was Microcystis sp., which had a cell abundance ratio of 17%. The results of two sites were 21% and 13%, and the upstream was higher than the downstream.

2010년 4월부터 2015년 12월까지 영산강 본류에 위치해 있는 죽산보의 상, 하류의 수질 및 식물플랑크톤 변화 양상을 파악하기 위해 연구를 수행하였다. 동일한 기간 동안에 두 지점 모두 평균 수온은 $17.3^{\circ}C$로 기록되었으며, 2011년부터 2014년까지는 약 $16.3^{\circ}C$를 유지하다가 2015년에 $17^{\circ}C$로 약 $0.7^{\circ}C$ 상승되었다. 조사기간 동안 식물플랑크톤의 종 조성은 총 288 분류군으로 남조류 17 분류군, 규조류 74 분류군, 녹조류 154 분류군 및 기타조류 15 분류군으로 조사되었다. 두 지점의 개체군 밀도는 $500{\sim}29,950cells{\cdot}mL^{-1}$으로 조사되었으며, Y1지점은 $850{\sim}29,725cells{\cdot}mL^{-1}$, Y2지점은 $500{\sim}29,950cells{\cdot}mL^{-1}$으로 조사되었다. 두 지점의 평균 개체군 밀도는 Y1지점이 $8,180cells{\cdot}mL^{-1}$, Y2지점이 $7,530cells{\cdot}mL^{-1}$으로 상류지점의 평균 밀도가 더 높게 조사되었다. 우점종은 규조류인 Stephanodiscus속, Aulacoseira속이 높게 나타났으며, Stephanodiscus의 우점 빈도는 59%였고, Aulaocseira 속의 우점빈도는 22%였다. 남조류의 전체속의 우점빈도는 17%였고, Y1지점이 19%로 Y2지점보다 2% 높게 나타났다. 그 중에 Microcystis속의 우점 빈도가 6%였고, Y1지점이 7%로 하류인 Y2지점보다 2% 높게 나타난 것을 확인할 수 있었다. Y1지점의 현존량 비율은 규조류가 전체의 52%, 녹조류가 24%, 남조류가 21%였고, Y2지점은 규조류 65%, 녹조류 18%, 남조류 13%로 상류 지점인 Y1지점의 남조류 현존량 비율이 더 높게 나타난 것을 볼 수 있었다. 본 연구는 식물플랑크톤의 천이 현상 및 수질요인들과의 변화에 따른 원인을 파악하고 영산강 죽산보의 특성에 대해 신뢰성 있는 데이터를 제공하기 위해 수행되었으며, 이후 수생태계 변화를 평가하는 기초자료로 활용될 수 있을 것이다.

Keywords

References

  1. Berg GM, M Balode, I Purina, S Bekere, C Bechemin and SY Maestrini. 2003. Plankton community composition in relation to availability and uptake of oxidized and reduced nitrogen. Aquat. Microb. Ecol. 30:263-274.
  2. Choi MK, BH Kim and KC Choi. 1995. Freshwater algae in the upstream of the Yongsan River System (1) - on the drinking water supplying area of Kwangju Districts -. Korean J. Sanitation 10:45-65.
  3. Han SR, K Cho, JH Yoon, JJ Lee, SA Yoo, IC Choi, HJ Joo, SU Cheon and BJ Lim. 2016. Phytoplankton community structure of midstream of Geum River on 2014 and 2015. Korean J. Ecol. Environ. 49:375-384.
  4. HRFCO. 2013. List of Rivers of South Korea. Han River Flood Control Office. Ministry of Environment, Korea.
  5. Jeong B, Y Kim, SW Jung, H Lee and Y Shin. 2014. Temporal variation and identification of a Centric Diatom, Stephanodiscus spp. during winter-spring blooms in the Yeongsan River. Korean J. Ecol. Environ. 47:273-281.
  6. Jeong EJ, JE Na, GM Kim, SS Shim and HY Lee. 2010. Water temperature and community of phytoplankton in Yongsan River, Korea. Korean J. Environ. Biol. 28:56-63.
  7. Jung SW, HM Joo, YO Kim, JH Lee and MS Han. 2011. Effects of temperature and nutrient depletion and reintroduction on growth of Stephanodiscus hantzschii (Bacillariophyceae): implication for the blooming mechanism. J. Freshw. Ecol. 26:115-121.
  8. Kang SA and KG An. 2006. Spatio-temporal variation analysis of physico-chemical water quality in the Yeongsan River watershed. Korean J. Limnol. 39:73-84.
  9. Kim GY and JI Choi. 1988. Standing crops of phytoplankton in Lake Yongsan. Algae 3:183-192.
  10. Kim YJ. 2003. Dynamics of phytoplankton community in Youngsan River. Algae 18:207-215.
  11. Ko DG, JW Choi, BJ Lim, JH Park and KG An. 2012. Fish distribution, compositions and community structure characteristics during Juksan-Weir construction in Yeongsan River watershed. Korean J. Ecol. Environ. 26:892-901.
  12. K-water. 2012. Development of methods for optimal algae control reflecting the algae growth characteristics of weirs in four major rivers. Korea Water Resources Corporation. ME. 2017. Standard method for water and wastewater. Ministry of Environment, Korea.
  13. Noh S, Y Shin, H Choi, J Lee, J Lee and D Rhew. 2015. Characteristics of algae occurrence on environmental changes. J. Environ. Impact Assess. 24:278-286.
  14. Park CS and KG An. 2014. Fish passage assessments in the fishway of Juksan Weir constructed in the downstream area of Youngsan River watershed. J. Environ. Sci. Int. 23:1513-1522.
  15. Park CS, JW Choi, JH Lee, BJ Lim, JH Park and KG An. 2013. Fish compositions and distribution characteristics in the upstream and downstream region of Seungchon Weir. J. Korean Soc. Water Environ. 29:196-203.
  16. Parmer M. 1962. Algae in water supplies: an illustrated manual on the identification, significance, and control of algae in water supplies. U.S. Department of Health, Education and Welfare. Public Health Service. Division of water supply and pollution control.
  17. Ryu HS, HK Park, HJ Lee, RY Shin and SU Cheon. 2016. Occurrence and succession pattern of cyanobacteria in the upper region of the Nakdong River: Factors influencing Aphanizomenon Bloom. J. Korean Soc. Water Environ. 32:52-59.
  18. Seo KA, JE Na, HS Ryu and K Kim. 2018. Characteristics of nitro-nutrients and phytoplankton dynamics in the Yeongsan River after weir construction. J. Korean Soc. Water Environ. 34:424-431.
  19. Shin JK, BK Kang and SJ Hwang. 2016. Limnological study on spring-bloom of a green algae, Eudorina elegans and weirwater pulsed-flows in the midstream (Seungchon weir pool) of the Yeongsan River, Korea. Korean J. Ecol. Environ. 49:320-333.
  20. Shin Y, H Yu, H Lee, D Lee and G Park. 2015. The change in patterns and conditions of algal blooms resulting from construction of weirs in the Youngsan River: long-term data analysis. Korean J. Ecol. Environ. 48:238-252.
  21. Son M, JH Park, C Lim, S Kim and BJ Lim. 2013. Seasonal changes of phytoplankton community and water quality in Yeongsan River watershed. Korean J. Environ. Biol. 31:105-112.
  22. Song E, S Jeon, E Lee, D Park and Y Shin. 2012. Long-term trend analysis of chlorophyll-a and water quality in the Yeongsan River. Korean J. Limnol. 45:302-313.
  23. Woo H. 2010. Trends of ecological river engineering in Korea. J. Hydro-Environ. Res. 4:269-278.
  24. Wui IS. 1974. The biological estimation of water pollution levels on the benthos fauna of the Yeong-san River. Korean J. Ecol. Environ. 7:29-43.
  25. Yu JJ, HJ Lee, KL Lee, HS Lyu, JW Whang, LY Shin and SU Chen. 2014. Relationship between distribution of the dominant phytoplankton species and water temperature in the Nakdong River, Korea. Korean J. Ecol. Environ. 47:547-257.