• Title/Summary/Keyword: Standby mode controller

Search Result 15, Processing Time 0.021 seconds

For the multiple-output switching mode power supply implementation standby mode using the controller of secondary linear regulator (선형 레귤레이터 제어기의 부하전류 정보를 이용한 다중출력 전원공급장치에서의 대기전력 저감회로 구현)

  • Lee, Jong-Hyun;Jung, An-Yeol;Park, Joung-Hu
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.514-515
    • /
    • 2010
  • 본 논문은 다중출력 스위칭 모드 전원 공급장치의 경부하 상태에서 2차측의 부하 전압안정을 위하여 일반적으로 사용하는 선형 전압조정기의 제어기 내 부하전류정보를 이용하여, 대기모드를 구현함으로써 시스템의 효율을 향상 시켰다. 제안된 회로의 동작원리를 설명하고 이를 시뮬레이션을 통하여 확인하고 20W급 하드웨어 프로토타입을 이용하여 검증하였다.

  • PDF

Camera Controller in MSC(Multi-Spectral Camera)

  • Kim, Young-Sun;Yong, Sang-Soon;Kong, Jong-Pil;Heo, Haeng-Pal;Park, Jong-Euk;Youn, Heong-Sik
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1081-1083
    • /
    • 2003
  • The CC's main objective is to manage and control the various operation of the MSC camera. The CC has capability to control the various camera operation modes such as INIT mode, WAIT mode, STANDBY mode, READY IMAGING, DEFAULT READY IMAGING, IBIT and IMAGING mode as well as to manage the interface of the PMU. This paper also shows not only the design concepts in the both of the hardware and the operational software, but also the implementation results for the various CC functions.

  • PDF

Unscented Kalman Filtering for Spacecraft Attitude and Rate Determination Using Magnetometer

  • Kim, Sung-Woo;Park, Sang-Young;Abdelrahman, Mohammad;Choi, Kyu-Hong
    • Bulletin of the Korean Space Science Society
    • /
    • 2008.10a
    • /
    • pp.36.1-36.1
    • /
    • 2008
  • An Unscented Kalman Filter(UKF) for estimation of attitude and rate of a spacecraft using only magnetometer vector measurement is presented. The dynamics used in the filter is nonlinear rotational equation which is augmented by the quaternion kinematics to construct a process model. The filter is designed for low Earth orbit satellite, so the disturbance torques include gravity-gradient torque, magnetic disturbance torque, and aerodynamic drag. The magnetometer measurements are simulated based on time-varying position of the spacecraft. The filter has been tested not only in the standby mode but also in the detumbling mode. To stabilize the attitude, linear PD controller is applied and the actuator is assumed to be thruster. A Monte-Carlo simulation has been done to guarantee the stability of the filter performance to the various initial conditions. The UKF performance is compared to that of EKF and it reveals that UKF outperforms EKF.

  • PDF

Unscented KALMAN Filtering for Spacecraft Attitude and Rate Determination Using Magnetometer

  • Kim, Sung-Woo;Abdelrahman, Mohammad;Park, Sang-Young;Choi, Kyu-Hong
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.1
    • /
    • pp.31-46
    • /
    • 2009
  • An Unscented Kalman Filter (UKF) for estimation of the attitude and rate of a spacecraft using only magnetometer vector measurement is developed. The attitude dynamics used in the estimation is the nonlinear Euler's rotational equation which is augmented with the quaternion kinematics to construct a process model. The filter is designed for small satellite in low Earth orbit, so the disturbance torques include gravity-gradient torque, magnetic disturbance torque, and aerodynamic drag torque. The magnetometer measurements are simulated based on time-varying position of the spacecraft. The filter has been tested not only in the standby mode but also in the detumbling mode. Two types of actuators have been modeled and applied in the simulation. The PD controller is used for the two types of actuators (reaction wheels and thrusters) to detumble the spacecraft. The estimation error converged to within 5 deg for attitude and 0.1 deg/s for rate respectively when the two types of actuators were used. A joint state parameter estimation has been tested and the effect of the process noise covariance on the parameter estimation has been indicated. Also, Monte-Carlo simulations have been performed to test the capability of the filter to converge with the initial conditions sampled from a uniform distribution. Finally, the UKF performance has been compared to that of the EKF and it demonstrates that UKF slightly outperforms EKF. The developed algorithm can be applied to any type of small satellites that are actuated by magnetic torquers, reaction wheels or thrusters with a capability of magnetometer vector measurements for attitude and rate estimation.

Buffer Cache Management for Low Power Consumption (저전력을 위한 버퍼 캐쉬 관리 기법)

  • Lee, Min;Seo, Eui-Seong;Lee, Joon-Won
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.6
    • /
    • pp.293-303
    • /
    • 2008
  • As the computing environment moves to the wireless and handheld system, the power efficiency is getting more important. That is the case especially in the embedded hand-held system and the power consumed by the memory system takes the second largest portion in overall. To save energy consumed in the memory system we can utilize low power mode of SDRAM. In the case of RDRAM, nap mode consumes less than 5% of the power consumed in active or standby mode. However hardware controller itself can't use this facility efficiently unless the operating system cooperates. In this paper we focus on how to minimize the number of active units of SDRAM. The operating system allocates its physical pages so that only a few units of SDRAM need to be activated and the unnecessary SDRAM can be put into nap mode. This work can be considered as a generalized and system-wide version of PAVM(Power-Aware Virtual Memory) research. We take all the physical memory into account, especially buffer cache, which takes an half of total memory usage on average. Because of the portion of buffer cache and its importance, PAVM approach cannot be robust without taking the buffer cache into account. In this paper, we analyze the RAM usage and propose power-aware page allocation policy. Especially the pages mapped into the process' address space and the buffer cache pages are considered. The relationship and interactions of these two kinds of pages are analyzed and exploited for energy saving.