• Title/Summary/Keyword: Standard uptake value (SUV)

Search Result 47, Processing Time 0.023 seconds

The Difference of Standardized Uptake Value on PET-CT According to Change of CT Parameters (PET-CT에서 CT의 관전압 및 관전류에 따른 SUV값의 변화)

  • Shin, Gyoo-Seul;Dong, Kyeong-Rae
    • Journal of radiological science and technology
    • /
    • v.30 no.4
    • /
    • pp.373-379
    • /
    • 2007
  • Purpose : There is difference between PET and PET/CT method on their transmission image for attenuation correction. The CT image is used for attenuation correction on PET/CT and the parameters of CT may be affected on PET image. We performed the phantom study to evaluate whether the change of CT parameters(kilovolts peak and milliampere) affect standardized uptake value(SUV) on PET image. Material and Method: The data spectrum lung phantom containing diluted [18F]fluorodeoxyglucose ([18F]FDG) solution(1.909 mCi for phantom 1, $913\;{\mu}Ci$ for phantom 2) was used. The CT images of phantom were acquired with varying parameters (80, 100, 120, 140 for kVp, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100 for mA). The PET images were reconstructed with the each CT images and SUVs were compared. Result : The SUVs of phantom 1 reconstructed with each 80, 100, 120 and 140 kVp showed $12.26{\pm}0.009$, $12.27{\pm}0.005$, $12.27{\pm}0.006$ and $12.27{\pm}0.009$, respectively. The SUVs of phantom 2 revealed $4.52{\pm}0.043$, $4.53{\pm}0.004$, $4.52{\pm}0.007$ and $4.52{\pm}0.005$ with elevation of voltage. There was no statistically significant difference of SUVs between groups based on various kVp. Also SUVs of phantom 1 and 2 showed no significant change with elevation of milliampere in CT parameter. Conclusion : The parameters of CT did not significantly affect SUV on PET image in our study. Therefore we can apply various parameters of CT appropriated for clinical conditions without significant change of SUV on PET CT image.

  • PDF

Usefulness of Bone SPECT/CT for Predicting Avascular Necrosis of the Femoral Head in Children with Slipped Capital Femoral Epiphysis or Femoral Neck Fracture

  • Yoo Sung Song;Won Woo Lee;Moon Seok Park;Nak Tscheol Kim;Ki Hyuk Sung
    • Korean Journal of Radiology
    • /
    • v.23 no.2
    • /
    • pp.264-270
    • /
    • 2022
  • Objective: This study aimed to investigate the usefulness of bone single-positron emission tomography/computed tomography (SPECT/CT) of the hip in predicting the later occurrence of avascular necrosis (AVN) after slipped capital femoral epiphysis (SCFE) or femoral neck fracture in pediatric patients. The quantitative parameters of SPECT/CT useful in predicting AVN were identified. Materials and Methods: Twenty-one (male:female, 10:11) consecutive patients aged < 18 years (mean age ± standard deviation [SD], 11.0 ± 2.7 years) who underwent surgery for SCFE or femoral neck fracture and postoperative bone SPECT/CT were included. The maximum standardized uptake value (SUV), mean SUV, and minimum SUV of the femoral head were measured. The ratios of the maximum SUV, mean SUV, and minimum SUV of the affected femoral head to the contralateral side were determined. Patients were followed up for > 1 year after the surgery. The SPECT/CT parameters were compared between patients who developed AVN and those who did not. The accuracy of SPECT/CT parameters for predicting AVN was assessed. Results: Six patients developed AVN. There was a significant difference in the ratio of the mean SUV among patients who developed AVN (mean ± SD, 0.8 ± 0.3) and those who did not (1.1 ± 0.2, p = 0.018). However, there were no significant differences in the ratios of the maximum and minimum SUV between the groups (all p = 0.205). For the maximum, mean, and minimum SUVs, no significant differences were observed between the groups (p = 0.519, 0.733, and 0.470, respectively). The cutoff mean SUV ratio of 0.87 yielded a 66.7% sensitivity and 93.2% specificity for predicting AVN. Conclusion: Quantitative bone SPECT/CT is useful for evaluating femoral head viability in pediatric patients with SCFE or femoral neck fractures. Clinicians should consider the high possibility of later AVN development in patients with a decreased mean SUV ratio.

The Preoperative Diagnosis of Thyroid Cancer in $^{18}F$-FDG PET/CT Dual Time Imaging of SUV and Evaluation of Radioactivity Measurement (갑상선암 수술 전 진단목적의 $^{18}F$-FDG PET/CT Dual Time Point영상에서 SUV값과 방사능 농도 측정법의 유용성 평가)

  • Lee, Hyun-Kuk;Khang, Hyun Soo;Yang, Seoung-Oh;Han, Man-Seok
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.99-105
    • /
    • 2012
  • Purpose : This study is designed to compare two parameters reflecting $^{18}F$-FDG uptake, SUV and radioactivity, for diagnosis of thyroid cancer in dual time $^{18}F$-FDG PET/CT imaging and to find which parameter is more useful to decide whether the tumor is malignant or not. Materials and Methods : We performed retrospective study for 40 patients. All patients are diagnosed as primary thyroid cancer and examined $^{18}F$-FDG PET/CT. First, we got the dispersion of scattering beam of neck and lung apex to set a background and compared each dispersion, mean value, standard deviation of maxSUV and radioactivity. Also, mean maxSUV, ${\Delta}maxSUV$, ${\Delta}maxBq$/ml(%) and radioactivity between groups according to lesion's size based on biopsy are compared with independent-sample t-test. Results : the values that were from maxSUV and radioactivity measurement technique were compensated and calculated to practical values for mean comparison and patients were divided to two groups based on tumor size, Group1 ($size{\leq}1$ cm, n=21), Group2 (size>1 cm, n=19) for accurate comparison. In Group1, maxSUV (semi-quantitative analysis) was increased from $5.64{\pm}5.85$ (1.89~17.84) at first image to $5.90{\pm}5.01$ (1.95~18.22) at second image and radioactivity (Bq/ml) (quantitative analysis) showed similar increase from $5.93{\pm}6.38$ (2.50~16.75) at first image to $6.01{\pm}5.25$ (2.66~16.58) at second image. In Group2, TFmaxSUV was $10.54{\pm}14.36$ (2.54~33.89) in true first image, TSmaxSUV was $9.85{\pm}12.88$ (2.62~26.20) in true second image separately. The maxSUV showed a significant difference in the mean comparison between the two groups (p=0.035) But, mean radioactivity (Bq/ml) was $5.93{\pm}6.38$ (4.81~40.99) in true first image, $6.01{\pm}5.25$ (4.51~36.93) in true second image and didn't show a significant difference statistically (p=0.126) Conclusion : In diagnosis of thyroid tumor, SUV and radioactivity depending on $^{18}F$-FDG uptake showed high similarity with coefficient of determination (R2=0.939) and malignant evaluation results using dual time also showed similar aspect. Radioactivity for evaluation of malignant tumor didn't show better specificity or sensitivity than maxSUV.

  • PDF

FDG Uptake and a Contrast Enhancement According to Histopathologic Types in Lung Cancers (폐암의 조직학적 분류에 따른 종양의 FDG 섭취와 CT 조영증강정도에 관한 연구)

  • Han, You-Mie;Choe, Jae-Gol;Kim, Young-Chul;Park, Eun-Kyung
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.1
    • /
    • pp.19-25
    • /
    • 2009
  • Purpose: The aims of this study were to analyze correlation between the maximum standardized uptake value (SUVmax) of 2-[F-18]-fluoro-2-deoxy-d-glucose (FDG) on positron emission computed tomography (PET-CT) scan and the degree of contrast enhancement on computed tomography (CT) scan in lung cancers, and to recognize the difference in SUVmax and CT enhancement between groups of different histopathologic subtypes. Materials and Methods: Our study included 53 patients of pathologically confirmed primary lung cancer, who were performed PET-CT and post-contrast chest CT. We calculated initial and delayed SUVmax (SUV1, SUV2), difference between SUV1 and SUV2 (SUVd), retention index (RI), and the degrees of CT contrast enhancement of lung cancers. We analyzed these variables for subtypes of lung cancers. Results: The values (mean$\pm$ standard deviation) were $8.3{\pm}4.4$ for SUV1, $10.7{\pm}5.7$ for SUV2, $2.4{\pm}1.6$ for SUVd, $30{\pm}14$ for RI and $47.1{\pm}14.8$ HU (Hounsfield Unit) for degree of CT contrast enhancement. The difference of SUV1 and degree of CT enhancement between subtypes was not meaningful. SUV1 showed positive correlations with SUVd (r=0.74, p<0,01) and tumor size (r=0.58, p<0.01), but no significant correlation with degree of CT enhancement (r=0.06, p=0.69). In 10 cases, there was discrepancy in the same mass between the area of highest FDG-uptake and the area of highest contrast enhancement. Conclusion: We suggest that FDG uptake in lung cancer does not have a positive linear correlation with degree of CT enhancement. And there is no significant difference in FDG uptake and degree of CT enhancement between different subtypes of lung cancers.

The evaluation of useful on the additional PET/CT Liver scan (PET/CT 검사에서 Gastrointestinal Cancer 환자의 Liver 추가촬영에 대한 유용성 평가)

  • Park, Se Youn;Lee, Hwa Jin;Lee, Mu Seok;Kim, Jung Uk;Ji, Hye In
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.20 no.2
    • /
    • pp.46-48
    • /
    • 2016
  • Purpose The liver one of the most common site for distant metastasis for a variety of tumor, especially of gastrointestinal origin. the purpose of this study was to analyze image quality between standard scan and additional liver scan. Materials and Methods From September 2015 to February 2016. 152 patients were examined undergo gastrointestinal cancer. 32 patients confirmed liver metastasis analyzed same liver ROI level and check the SNR, SUV and T/N ratio Results The $SNR_{mean}$ of standard was $17.7{\pm}10.3$; addition was $22.3{\pm}9.7$ (p<0.05). In $SUV_{max}$ of standard was $6.7{\pm}2.8$; addition was $7.6{\pm}3.2$ (P<0.05). and the T/N ratio of standard was $2.1{\pm}0.6$; addition was $2.5{\pm}0.8$ (P<0.05). Conclusion The $SNR_{mean}$, $SUV_{max}$ and T/N ratio were higher than those on the first scan (P<0.05). The SNRmean showed the highest change rate among the parameters. A additional liver scan is more favorable for the detection of gastrointestinal cancer patients.

  • PDF

A study on Broad Quantification Calibration to various isotopes for Quantitative Analysis and its SUVs assessment in SPECT/CT (SPECT/CT 장비에서 정량분석을 위한 핵종 별 Broad Quantification Calibration 시행 및 SUV 평가를 위한 팬텀 실험에 관한 연구)

  • Hyun Soo, Ko;Jae Min, Choi;Soon Ki, Park
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.26 no.2
    • /
    • pp.20-31
    • /
    • 2022
  • Purpose Broad Quantification Calibration(B.Q.C) is the procedure for Quantitative Analysis to measure Standard Uptake Value(SUV) in SPECT/CT scanner. B.Q.C was performed with Tc-99m, I-123, I-131, Lu-177 respectively and then we acquired the phantom images whether the SUVs were measured accurately. Because there is no standard for SUV test in SPECT, we used ACR Esser PET phantom alternatively. The purpose of this study was to lay the groundwork for Quantitative Analysis with various isotopes in SPECT/CT scanner. Materials and Methods Siemens SPECT/CT Symbia Intevo 16 and Intevo Bold were used for this study. The procedure of B.Q.C has two steps; first is point source Sensitivity Cal. and second is Volume Sensitivity Cal. to calculate Volume Sensitivity Factor(VSF) using cylinder phantom. To verify SUV, we acquired the images with ACR Esser PET phantom and then we measured SUVmean on background and SUVmax on hot vials(25, 16, 12, 8 mm). SPSS was used to analyze the difference in the SUV between Intevo 16 and Intevo Bold by Mann-Whitney test. Results The results of Sensitivity(CPS/MBq) and VSF were in Detector 1, 2 of four isotopes (Intevo 16 D1 sensitivity/D2 sensitivity/VSF and Intevo Bold) 87.7/88.6/1.08, 91.9/91.2/1.07 on Tc-99m, 79.9/81.9/0.98, 89.4/89.4/0.98 on I-123, 124.8/128.9/0.69, 130.9, 126.8/0.71, on I-131, 8.7/8.9/1.02, 9.1/8.9/1.00 on Lu-177 respectively. The results of SUV test with ACR Esser PET phantom were (Intevo 16 BKG SUVmean/25mm SUVmax/16mm/12mm/8mm and Intevo Bold) 1.03/2.95/2.41/1.96/1.84, 1.03/2.91/2.38/1.87/1.82 on Tc-99m, 0.97/2.91/2.33/1.68/1.45, 1.00/2.80/2.23/1.57/1.32 on I-123, 0.96/1.61/1.13/1.02/0.69, 0.94/1.54/1.08/0.98/ 0.66 on I-131, 1.00/6.34/4.67/2.96/2.28, 1.01/6.21/4.49/2.86/2.21 on Lu-177. And there was no statistically significant difference of SUV between Intevo 16 and Intevo Bold(p>0.05). Conclusion Only Qualitative Analysis was possible with gamma camera in the past. On the other hand, it's possible to acquire not only anatomic localization, 3D tomography but also Quantitative Analysis with SUV measurements in SPECT/CT scanner. We could lay the groundwork for Quantitative Analysis with various isotopes; Tc-99m, I-123, I-131, Lu-177 by carrying out B.Q.C and could verify the SUV measurement with ACR phantom. It needs periodic calibration to maintain for precision of Quantitative evaluation. As a result, we can provide Quantitative Analysis on follow up scan with the SPECT/CT exams and evaluate the therapeutic response in theranosis.

A Study of Influence of Filgrastim on PET/CT In Diffuse Large B cell Lymphoma (미만성 거대 B 세포 림프종 환자에서 Filgrastim 사용이 PET/CT 영상에 미치는 영향에 대한 고찰)

  • NamKoong, Hyuk;Park, Hoon-Hee;Ban, Yung-Gak;Kang, Sin-Chang;Kim, Sang-Kyoo;Lim, Han-Sang;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.13 no.3
    • /
    • pp.17-23
    • /
    • 2009
  • Purpose: It has been known that PET/CT is very valuable in follow-up study of diffuse large B cell lymphoma (DLBCL). Generally, in DLBCL, radiotherapy and chemotherapy has been progressed, because the lesion hasn‘t been limited to one site. And, it has lead to the decrease of leukocyte like neutropenia, due to myelosuppression of chemotherapy. So, in that case, administration of Filgrastim (Granulocyte colony-stimulating factor; G-CSF) is universal. However, in short time after administration, PET/CT has limitation to offer accurate images, through the uptake of $^{18}F$-FDG is increased in the region that is activated bone marrow by hematopoietic growth. Therefore, the aim of this study is that PET/CT in a certain period of time after administration of Filgrastim is able to show normal degree of $^{18}F$-FDG uptake. Materials and Methods: 10 patients under follow-up study of diffuse large B cell lymphoma were examined in this study from January, 2007 to January, 2009 (Male: 4 persons; Female: 6 persons; The mean age: 53.8 years old; The mean weight: 57.3 Kg). Using PET/CT (Discovery STe; GE Healthcare, Milwaukee, WI, USA), whole body images were acquired in 1 hour after $^{18}F$-FDG injection. For image analysis, each ROI ($120\;mm^2$) was drawn on $C^6$ (the sixth C-spine), $L_4$ (the forth L-spine), liver, spleen, and lung, then SUV (Standard Uptake Value)s were measured. We compared with each uptake between in 1-day and 5~7 days after administration of Filgrastim at same patient, so confirmed significance about these by SPSS version 12. Results: In case of $C_6$, $L_4$, spleen, every SUV of 1 day later was remarkably higher than that of 5~7 days later, but liver and lung were similar. Also, the images acquired after 5~7 days distinct remarkably and show normal degree of $^{18}F$-FDG uptake, because uptake of bone was almost disappeared. Conclusions: In this study, each SUV was prominent difference as a period of time after Filgrastim’s administration. And Filgrastim makes concentrate uptake of $^{18}F$-FDG in bone, but, after 5~7 days, bone‘s uptake was greatly decreased. Therefore, we are able to infer a certain period of time that shows normal degree of uptake, by numerical value proven. Also, we consider that this study contribute to advanced study about the other agent like Pegfilgrastim, Lenograstim besides Filgrastim, afterwards.

  • PDF

Correction of Artifacts due to Patient Arm Motion in PET/CT: Scatter-Limit Correction (PET/CT 검사에서 움직임에 의한 인공물의 산란제한보정법 적용 영상 평가)

  • Bahn, Young Kag;Lee, Seung Jae;Kim, Jung Yul;Oh, Sin Hyun;Nam-Koong, Hyuk;Park, Hoon-Hee;Kang, Chun Koo;Lim, Han Sang;Lee, Chang Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.16 no.2
    • /
    • pp.44-48
    • /
    • 2012
  • Purpose : Arm motion can give rise to striking cold artifact on PET/CT. We investigated that evaluation of scatter-limit correction and correct the patient arm motion artifact in Discovery 600 PET/CT. Materials and Methods : To evaluate a radioactivity uptake (Bq/ml) and a standard uptake value (SUV), the scatter limit correction and scatter correction were compared using 1994 NEMA Phantom$^{TM}$ in Discovery 600 PET/CT (GE Healthcare, Mi, We). Arm motion phantom study was involved a central 20 cm diameter cylinder simulating the neck and 2 peripheral 10 cm diameter cylinders simulating arms. The positions of the arms were altered so as to introduce different amounts of misalignment. The evaluation of arm motion phantom study used the radioactivity uptake and SUV in scatter correction and scatter limit correction. Results : The statistical significance of radioactivity uptake and SUV did not show the differences in comparisons of the scatter limit correction and the scatter correction that not show (p<0.05). Radioactivity uptake of the scatter correction was up to 3.1 kBq/ml in the 0.04 kBq/ml. It was approximately 98.7% undervalued in the arm motion phantom study. However, Radioactivity uptake of the scatter limit correction was up to 3.0 kBq/ml in the 2.11 kBq/ml. It was approximately 30% undervalued in arm motion phantom study. SUV of the scatter correction was 1.05 to 0.006 and underestimated about 98%. However, an applying SUV of the scatter limit correction changed the value as 0.67 which is underestimated about 25%. Radioactivity uptake and SUV of the scatter limit correction was increased approximately 60%, or more than the scatter correction. Conclusion : It is considered that if the patient arm motion artifact was occurred the scatter limit correction will be applicable to give an accurate diagnosis.

  • PDF

A Comparative Study of the Standard Uptake Values of the PET Reconstruction Methods; Using Contrast Enhanced CT and Non Contrast Enhanced CT (PET/CT 영상에서 조영제를 사용하지 않은 CT와 조영제를 사용한 CT를 이용한 감쇠보정에 따른 표준화섭취계수의 비교)

  • Lee, Seung-Jae;Park, Hoon-Hee;Ahn, Sha-Ron;Oh, Shin-Hyun;NamKoong, Heuk;Lim, Han-Sang;Kim, Jae-Sam;Lee, Chang-Ho
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.12 no.3
    • /
    • pp.235-240
    • /
    • 2008
  • Purpose: At the beginning of PET/CT, Computed Tomography was mainly used only for Attenuation Correction (AC), but as the performance of the CT have been increase, it could give improved diagnostic information with Contrast Media. But it was controversial that Contrast Media could affect AC on PET/CT scan. Some submitted thesis' show that Contrast Media could overestimate when it is for AC data processing. On the contrary, the opinion that Contrast Media could be possible to affect the alteration of SUV because of the overestimated AC. But it does not have a definite effect on the diagnosis. Thus, the affection of Contrast Media on AC was investigated in this study. Materials and Methods: Patient inclusion criteria required a history of a malignancy and performance of an integrated PET/CT scan and contrast- enhanced CT scan within a 1-day period. Thirty oncologic patients who had PET/CT scan from December 2007 to June 2008 underwent staging evaluation and met these criteria. All patients fasted for at least 6 hr before the IV injection of approximately 5.6 MBq/kg (0.15 mCi/kg) of $^{18}F$-FDG and were scanned about 60 min after injection. All patients had a whole body PET/CT performed without IV contrast media followed by a contrast-enhanced CT on the Discovery STe PET/CT scanner. CT data were used for AC and PET images came out after AC. The ROIs drew and measured SUV. A paired t-test of these results was performed to assess the significance of the difference between the SUV obtained from the two attenuation corrected PET images. Results: The mean and maximum Standardized Uptake Values (SUV) for different regions averaged over all Patients. Comparing before using Contrast Media and after using, Most of ROIs have the increased SUV when it did Contrast Enhanced CT compare to Non-Contrast enhanced CT. All regions have increased SUV and also their p value was under 0.05 except the mean SUV of the Heart region. Conclusion: In this regard, the effect on SUV measurements that occurs when a contrast-enhanced CT is used for attenuation correction could have significant clinical ramifications. But some submitted thesis insisted that the percentage change in SUV that can determine or modify clinical management of oncology patients is small. Because there was not much difference that could be discovered by interpreter. But obviously the numerical change was occurred and on the stage finding primary region, small change would be base line, such as the region of liver which has greater change than the other regions needs more attention.

  • PDF

Evaluation of Proper Image Acquisition Time by Change of Infusion dose in PET/CT (PET/CT 검사에서 주입선량의 변화에 따른 적정한 영상획득시간의 평가)

  • Kim, Chang Hyeon;Lee, Hyun Kuk;Song, Chi Ok;Lee, Gi Heun
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.18 no.2
    • /
    • pp.22-27
    • /
    • 2014
  • Purpose There is the recent PET/CT scan in tendency that use low dose to reduce patient's exposure along with development of equipments. We diminished $^{18}F$-FDG dose of patient to reduce patient's exposure after setting up GE Discovery 690 PET/CT scanner (GE Healthcare, Milwaukee, USA) establishment at this hospital in 2011. Accordingly, We evaluate acquisition time per proper bed by change of infusion dose to maintain quality of image of PET/CT scanner. Materials and Methods We inserted Air, Teflon, hot cylinder in NEMA NU2-1994 phantom and maintained radioactivity concentration based on the ratio 4:1 of hot cylinder and back ground activity and increased hot cylinder's concentration to 3, 4.3, 5.5, 6.7 MBq/kg, after acquisition image as increase acquisition time per bed to 30 seconds, 1 minute, 1 minute 30 seconds, 2 minute, 2 minutes 30 seconds, 3 minutes, 3 minutes 30 seconds, 4 minutes, 4 minutes 30 seconds, 5 minutes, 5 minutes 30 seconds, 10 minutes, 20 minutes, and 30 minutes, ROI was set up on hot cylinder and back radioactivity region. We computated standard deviation of Signal to Noise Ratio (SNR) and BKG (Background), compared with hot cylinder's concentration and change by acquisition time per bed, after measured Standard Uptake Value maximum ($SUV_{max}$). Also, we compared each standard deviation of $SUV_{max}$, SNR, BKG following in change of inspection waiting time (15minutes and 1 hour) by using 4.3 MBq phantom. Results The radioactive concentration per unit mass was increased to 3, 4.3, 5.5, 6.7 MBqs. And when we increased time/bed of each concentration from 1 minute 30 seconds to 30 minutes, we found that the $SUV_{max}$ of hot cylinder acquisition time per bed changed seriously according to each radioactive concentration in up to 18.3 to at least 7.3 from 30 seconds to 2 minutes. On the other side, that displayed changelessly at least 5.6 in up to 8 from 2 minutes 30 seconds to 30 minutes. SNR by radioactive change per unit mass was fixed to up to 0.49 in at least 0.41 in 3 MBqs and accroding as acquisition time per bed increased, rose to up to 0.59, 0.54 in each at least 0.23, 0.39 in 4.3 MBqs and in 5.5 MBqs. It was high to up to 0.59 from 30 seconds in radioactivity concentration 6.7 MBqs, but kept fixed from 0.43 to 0.53. Standard deviation of BKG (Background) was low from 0.38 to 0.06 in 3 MBqs and from 2 minutes 30 seconds after, low from 0.38 to 0 in 4.3 MBqs and 5.5 MBqs from 1 minute 30 seconds after, low from 0.33 to 0.05 in 6.7 MBqs at all section from 30 seconds to 30 minutes. In result that was changed the inspection waiting time to 15 minutes and 1 hour by 4.3 MBq phantoms, $SUV_{max}$ represented each other fixed values from 2 minutes 30 seconds of acquisition time per bed and SNR shown similar values from 1 minute 30 seconds. Conclusion As shown in the above, when we increased radioactive concentration per unit mass by 3, 4.3, 5.5, 6.7 MBqs, the values of $SUV_{max}$ and SNR was kept changelessly each other more than 2 minutes 30 seconds of acquisition time per bed. In the same way, in the change of inspection waiting time (15 minutes and 1 hour), we could find that the values of $SUV_{max}$ and SNR was kept changelessly each other more than 2 minutes 30 seconds of acquisition time per bed. In the result of this NEMA NU2-1994 phantom experiment, we found that the minimum acquisition time per bed was 2 minutes 30 seconds for evaluating values of fixed $SUV_{max}$ and SNR even in change of inserting radioactive concentration. However, this acquisition time can be different according to features and qualities of equipment.

  • PDF