• Title/Summary/Keyword: Standard loading condition

Search Result 109, Processing Time 0.021 seconds

A Study on the Optimal Pre-loading Calculation of Strut of Retaining Wall through Numerical Interpretation (수치해석을 통한 흙막이벽체 버팀보의 최적 선행하중 산정에 관한 연구)

  • Moon, In Jong;Jang, Seung Ju;Lee, Kang Il
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.2
    • /
    • pp.45-56
    • /
    • 2021
  • As the utilization of the underground space is activated, deep excavation of ground has been conducted for the installation of underground structures, the earth retaining wall has widely used to minimize deformation of the excavated ground. In particular, as deep excavation is actively progressing in an urban area where structures are concentrated, methods to minimize the deformation of wall have been devised to prevent damage to the structure adjacent to the wall, and one of these methods is the pre-loading method. This method is a method of suppressing the deformation of wall by actively applying a load on the strut to be installed in wall, and research on this method has been conducted recently. However, although related studies have been actively conducted, the management standard for the pre-loading of bracing has not been clearly presented until now. In addition, since the working force in the strut may increase depending on the depth of excavation or the soil condition of the backfill, the magnitude of the pre-loading that can be applied to the brace may decrease. Nevertheless, the magnitude of the pre-loading (more than 50% of the working load) proposed by the previous research results has been uniformly applied to the strut. In this study, 3D finite element analysis was performed to evaluate the application range of the pre-loading of H-beam strut according to the soil conditions of backfill. As a result of the analysis, it was found that there is a very high possibility that a problem may occur in the stability of the structure of strut due to the earth pressure and the pre-loading when the soil condition is weak and deep excavation proceeds. And it was found that the application range of the pre-loading was 5%~70% of the working load in strut.

Structural Modeling and Characteristic Analysis of Container Handling System (컨테이너 적재 시스템의 구조 모델링 및 특성 해석)

  • Kim, Young-Sang;Maeng, Hee-Young
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.458-463
    • /
    • 2011
  • A CHS(Container Handling System) is a system to load and to unload ISO 2000 or ISO 4000 standard containers which is widely used for various industrial transport purpose. A new light type of CHS is introduced in this paper, in order to reduce weight of cargos and to give the convenience in cargo loading and unloading without additional lifting equipments. The structural models of this system are created to assemble the smooth integration of system and to interface the each composing units with the specification of truck chassis to be mounted. These models are applied to find the suitable design parameters under the condition of force restrictions of each units. Finally, the stability of this system are investigated by analyzing the dynamic simulation using Visual NASTRAN 4D, and it could be recommend the good design parameters for the manufacturing purpose.

Robust Design of Composite Structure under Combined Loading of Bending and Torsion (굽힘-비틀림 복합하중을 받는 복합재료 구조물의 최적 강건 설계)

  • Yun, Ji-Yong;O, Gwang-Hwan;Nam, Hyeon-Uk;Han, Gyeong-Seop
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.211-214
    • /
    • 2005
  • This research studied robust design of composite structure under combined loading of bending and torsion. DOE (Design of Experiment) technique was used to find important design factors. The results show that the beam height, beam width, layer thickness and stack angle of outer-layer are important design parameter. The $2^{nd}$ DOE and RSM (Response Surface Model) were conducted to obtain optimum design. Multi-island genetic algorithm was used to optimum design. An approximate value of 6.65 mm in deflection was expected under optimum condition. Six sigma robust design was conducted to find out guideline for control range of design parameter. To acquire six sigma level reliability, the sigma level reliability, the standard deviation of design parameter should be controlled within 2.5 % of average design value.

  • PDF

A Study on the Mechanical Properties of Concrete with Aggregate Type (골재 종류에 따른 콘크리트의 고온역학적 특성에 관한 연구)

  • Yoon, Dae-Ki;Kim, Gyu-Yong;Lee, Tae-Gyu;Choe, Gyeong-Choel;Koo, Kyung-Mo;Nam, Jeong-Soo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.63-64
    • /
    • 2012
  • In case of concrete, it should be deformed by many factors, such as explosive spalling, thermal strain and creep at high temperature. Structural fire design has been proposed to predict fire damage as national standard. It is general safer to use values obtained from tests of unstressed residual test in stead of stressed test. But most of thermal properties on concrete were conducted with normal aggregate. In this study, it evaluated mechanical properties of concrete with aggregate type and loading condition. we use normal and light aggregate to have different thermal properties. Also, we test mechanical properties to use Ø100×200 mm cylinder specimen according to target temperature and 0%, 20%, 40% loading.

  • PDF

Estimation of the Pollutant Loads from Paddy Fields by Cultivation Practices Using a Non-point-source Model (비점원오염모델을 이용한 논의 영농방법별 오염부하량 예측)

  • Han, Kuk-Heon
    • Korean Journal of Environmental Agriculture
    • /
    • v.27 no.1
    • /
    • pp.10-17
    • /
    • 2008
  • The objective of this study was to estimate the pollutant loads from paddy fields by cultivation practices using a non-point-sources models. One of them is CREAMS-PADDY model that was developed considering the water balance and mass balance of paddy fields. The CREAMS-PADDY model was applied to provide basic data to reduce runoff loadings under various scenarios such as various water management control and various fertilizer condition. The model was verified against T-N, T-P and runoff flow data collected during cropping periods at 2000. The model results agreed well with the measured data in verification. The results showed that the model could be used for estimating the runoff loadings from irrigated paddy fields by cultivation practices was possible. Comparison of simulated the standard height and the sluice management of T-N and T-P runoff loadings from paddy fields were +32.4%, +10.3% in 10 mm below the standard height, -29.2%, -35.9% in 20 mm above the standard height, 52.6%, 59.0% in 40 mm above the standard height, respectively. Comparison of simulated the standard fertilizer and the fertilizer control of T-N and T-P runoff loadings from paddy fields were -1.3%, -21.7%in reduction of conventional fertilizer 30%, -1.0%, -12.5% in reduction of standard fertilizer 30%, respectively. Therefore, reducing nonpoint-sources nutrient loading by reducing fertilization may not work well in the range of normal paddy rice farming practices, and instead it could be achieved by reducing surface drainage outflow.

An Experimental Study on the Thermal Property of Concrete under the Load Ratio Condition in Fire (화재시 하중재하에 따른 콘크리트의 열적특성에 관한 실험적 연구)

  • Kim, Hyung-Jun;Kim, Heung-Youl;Park, Kyung-Hun;Jung, Jae-Young;Kwan, Ki-Hyuk
    • Fire Science and Engineering
    • /
    • v.23 no.6
    • /
    • pp.66-74
    • /
    • 2009
  • When a fire occurs, the concrete structure's strength decreases by the increasing temperature under the fire in certain condition of constant load. And, the ratio of the axial force is changed by such decreased strength so that the structure is deformed. In this research, considering such case, we have conducted an actual fire test for the concrete lining with constant loading condition and various fire conditions. The specimen adopts the shape condition for small practical specimen defined by the EFNARC and we used 24MPa, 40MPa and 50MPa to analyze the thermal properties by the strength. The ratio of loading is imposed by a certain loading condition based on 20% and 40% of the sectional stress in concrete and MHC Fire is selected to realize the thermal impact of the concrete by rapid increasing temperature. As the result of the experiment, in the same ratio of loading, the 50MPa specimen shows more cracks and spalling as time goes on. The area damaged by the fire, according to the functional criteria of the concrete lining under the fire in ITA, does not satisfy with the standard in lack of 50mm depth from the heating surface at total 200mm lining.

THREE DIMENSIONAL FINITE ELEMENT STRESS ANALYSIS OF FIVE DIFFERENT TAPER DESIGN IMPLANT SYSTEMS (3차원 유한요소법적 분석을 이용한 5종의첨형 임플랜트에 발생하는 응력의 비교연구)

  • Byun, Sang-Ki;Park, Won-Hee;Lee, Young-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.44 no.5
    • /
    • pp.584-593
    • /
    • 2006
  • Statement of problem : Dental implant which has been developed gradually through many experiments and clinical applications is presently used to various dental prosthetic treatments. To conduct a successful function of implant prosthesis in oral cavity for a long time, it is important that not only structure materials must have the biocompatibility, but also the prosthesis must be designed for the stress, which is occurred in occlusion, to scatter adequately of load support. Therefore, it is essential to give the consideration about the stress analysis of supporting tissues for higher successful rates. Purpose : Recently, many implant manufacturing company produce various taper design of root form implant, the fixture is often selected. However, the stress analysis of taper form fixture still requires more studies. Material and method : This study we make the element models that five implant fixture; Branemark system(Nobel Biocare, Gothenberg, Sweden), Camlog system(Altatec, Germany), Astra system(Astra Tech, Sweden), 3i system(Implant Innovations Inc, USA), Avana system(Osstem, Korea) were placed in the area of mandibular first premolar and prosthesis fabricated, which we compared with stress distribution using the three-dimension finite element analysis under two loading condition. Results : This study compares the aspect of stress distribution of each system with the standard of Von mises stress, among many resulted from finite element analysis so that this research gets the following results. 1. In all implant system, oblique loading of maximum Von mises stress of implant, alveolar bone and crown is higher than vertical loading of those. 2. Regardless of loading conditions and type of system, cortical bone which contacts with implant fixture top area has high stress, and cancellous bone has a little stress. under the vertical loading, maximum Von mises stress is more higher in order of Branemark, Camlog, Astra, 3i, Avana. under the horizontal loading, maximum Von mises is more higher in order of Camlog, Branemark, Astra, 3i, Avana.

A Study on the Applicability of Bearing Capacity Formulas of Driven Pile by Comparison with the Results of Static Loading Tests (정재하시험 결과를 통한 타입말뚝 지지력 공식의 타당성 분석)

  • Chun, Byung-Sik;Lee, Seung-Beom
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.544-551
    • /
    • 2004
  • Piles are structural elements made of steel, concrete or timber, and utilize as pile foundation which is one of deep foundations. Driven pile among them, which drives pile into the ground, is fast-constructable, less expensive and it supplies much bearing capacity. For these reasons, its demand is steady. In this study, by selecting the cases which reached ultimate failure during in-situ static loading tests, bearing capacities acquired from these tests were compared with those computed by existing theories and formula. As the results of the analysis, ultimate bearing capacity computed by theoretic formula were less or similar to those of test results in most cases, but lower ground water level and more dense layer where end of piles were reached remarkably high bearing capacity in theoretical methods. ${\beta}-method$ and Korean structure foundation design standard were sensitive to ground physical properties. Meyerhof metbod and API code were relatively independent from site condition.

  • PDF

Simulation, analysis and optimal design of fuel tank of a locomotive

  • Yousefi, A. Karkhaneh;Nahvi, H.;Panahi, M. Shariat
    • Structural Engineering and Mechanics
    • /
    • v.50 no.2
    • /
    • pp.151-161
    • /
    • 2014
  • In this paper, fuel tank of the locomotive ER 24 has been studied. Firstly the behavior of fuel and air during the braking time has been investigated by using a two-phase model. Then, the distribution of pressure on the surface of baffles caused by sloshing has been extracted. Also, the fuel tank has been modeled and analyzed using Finite Element Method (FEM) considering loading conditions suggested by the DIN EN 12663 standard and real boundary conditions. In each loading condition, high stressed areas have been identified. By comparing the distribution of pressure caused by sloshing phenomena and suggested loading conditions, optimization of the tank has been taken into consideration. Moreover, internal baffles have been investigated and by modifying their geometric properties, search of the design space has been done to reach the optimal tank. Then, in order to reduce the mass and manufacturing cost of the fuel tank, Non-dominated Sorting Genetic Algorithm (NSGA-II) and Artificial Neural Networks (ANNs) have been employed. It is shown that compared to the primary design, the optimized fuel tank not only provides the safety conditions, but also reduces mass and manufacturing cost by %39 and %73, respectively.

Identification of Impact Factors in Ship-to-Ship Mooring Through Sensitivity Analysis

  • Lee, Sang-Won;Lee, Hyeong-Tak;Kim, Dae-Gun;Cho, Ik-Soon
    • Journal of Navigation and Port Research
    • /
    • v.43 no.5
    • /
    • pp.310-319
    • /
    • 2019
  • With the recent increase in the volume of liquid cargo transportation, there is a need for STS( Ship To Ship) globally. In the case of the STS mooring, the safety assessment should be conducted according to other criteria because mooring is different from the general mooring at the quay, but there is no separate standard in Korea. Thus in this study, STS mooring simulation and sensitivity analysis using OPTIMOOR program, the numerical analysis program, was conducted to identify the characteristics of the STS mooring. The target sea modeled the Yeosu port anchorage in Korea and the target ship was selected as the case of VLCC (Very Large Crude Oil Carrier)-VLCC. Through the numerical simulation and sensitivity analysis, the characteristics of STS mooring were identified. Also based on these results, we focused on establishing the standard for STS mooring safety assessment. Numerical simulation results show that the STS mooring safety can be changed according to a ship's cargo loading condition, pre-tension of mooring line, sea depth, encounter angle with the weather, and the weather condition. Additionally, the risk matrix is prepared to establish the safe external force range in the corresponding sea area. This result can be used to understand the mooring characteristics of STS and contribute to the revision of mooring safety assessment criteria.