• Title/Summary/Keyword: Standard k--$\varepsilon$Turbulence Model

Search Result 167, Processing Time 0.026 seconds

Numerical Analysis of Centrifugal Impeller for Different Viscous Liquids

  • Bellary, Sayed Ahmed Imran;Samad, Abdus
    • International Journal of Fluid Machinery and Systems
    • /
    • v.8 no.1
    • /
    • pp.36-45
    • /
    • 2015
  • Oil and gas industry pumps viscous fluids and investigation of flow physics is important to understand the machine behavior to deliver such fluids. 3D numerical flow simulation and analysis for different viscous fluids at different rotational speeds of a centrifugal impeller have been reported in this paper. Reynolds-averaged Navier Stokes (RANS) equations were solved and the performance analysis was made. Standard two equation k-${\varepsilon}$ model was used for the turbulence closure of steady incompressible flow. An inlet recirculation and reverse flow in impeller passage was observed at low impeller speeds. It was also found that the higher viscosity fluids have higher recirculation which hinders the impeller performance.

Redeveloping Turbelent Boundary Layer after Separation-Reattachment(II) -A Consideration on Turbulence Models- (박리-재부착 이후의 재발달 난류경계층 II -난류 모델들에 관한 고찰-)

  • 백세진;유정열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.999-1011
    • /
    • 1989
  • A consideration on the trubulence models for describing the redeveloping turbulent boundary layer beyond separation-reattachment in the flow over a backward-facing step is given through experimental and numerical studies. By considering the blance among the measured values of respective terms in the transport equations for the turbulent kinetic energy and the turbulent shear stress, the recovering process of the redeveloping boundary layer from non-equilibrium to equilibrium has been investigated, which takes place slowly over a substantial distance in the downstream direction. In the numerical study, the standard K-.epsilon. model and the Reynolds stress model have been applied to two kinds of flow regions, one for the entire downstream region after the backward-facing step and another for the downstream region after reattachment. Then the results are compared to a meaningful extent, with the experimental values of the turbulent kinetic energy k, the turbulent energy production term P, the dissipation term K-.epsilon. model, a necessity for a new modelling has been brought forward, which can be also applied to the case of the nonequlibrium turbulent flow.

Influence of the Leading Edge Shape of a 2-Dimensional hydrofoil on Cavitation Characteristics (2차원 날개단면의 앞날 형상 변화에 따른 캐비테이션 특성 연구)

  • I.H. Song;J.W. Ahn;I.S. Moon;K.S. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.1
    • /
    • pp.60-66
    • /
    • 2000
  • In order to improve cavitation characteristics for a high-speed propeller, leading edge shape of a 2-D hydrofoil is investigated numerically and experimentally. For flowfield analysis around the leading edge, the incompressible Reynolds Averaged Navier-Stokes(RANS) equation is solved using the standard $k-\varepsilon$ turbulence model and a finite volume method(FVM). The cavitation thickness, which is occurred on hydrofoil surface, is predicted using the panel code. It is shown that the calculation codes predict the experimental trend fairly well. From these results, new hydrofoils are designed

  • PDF

A Study on the Performance Improvement of Pressure Compensating Temperature Control Valve (압력 평형식 온도조절 밸브 성능 향상을 위한 연구)

  • Kim T.-A.;Kim Youn J.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.671-674
    • /
    • 2002
  • Pressure compensating temperature control valve(TCV) is one of the important control devices, which is used to maintain the constant temperature of working fluid in power and chemical plants. The ratio of cylinder hole diameters of inlet and outlet is the main design parameters of TCV. So this needs to be investigated to improve the function of control of temperature and void fraction. In this study, numerical analysis is carried out with various ratios of cylinder hole diameters of the inlet and outlet in the TCV. Especial1y, the distribution of the static pressure Is investigated to calculate the new coefficient($C_{\upsilon}$) and resistance coefficient(K). The governing equations are derived from making using of three-dimensional Naver-Stokes equations with standard $k-{\varepsilon}$ turbulence model and SIMPLE algorithm. Using a commercial code, PHOENICS, pressure and flow fields in TCV are calculated with different inlet and outlet diameters of the cylinder hole for cold and hot water passages.

  • PDF

A Study on the Development of the Water Hammering Cleaner System for Pipeline (수격파를 이용한 배관 세정기 개발 연구)

  • Kim H.-S.;Kim Youn J.;Park K.-J.
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.675-678
    • /
    • 2002
  • In order to develop the water hammering cleaner system for removing scale and slime in inner metal or non-metal piping wall, the flow characteristics are investigated by numerical and experimental methods. The air bubbles in the piping systems as a shock wave are formed and transferred with the water flow in the piping. The governing equations are derived from making using of three-dimensional Wavier-Stokes equations with the standard $k-{\varepsilon}$ turbulence model and SIMPLE algorithm. Pressure distributions in the pipeline are calculated for different air supply pressures. Also, we prepared some experimental results of the pressure differences for various air supply times.

  • PDF

Development of Viscous Boundary Conditions in an Immersed Cartesian Grid Framework

  • Lee, Jae-Doo
    • Journal of Ship and Ocean Technology
    • /
    • v.10 no.3
    • /
    • pp.1-16
    • /
    • 2006
  • Despite the high cost of memory and CPU time required to resolve the boundary layer, a viscous unstructured grid solver has many advantages over a structured grid solver such as the convenience in automated grid generation and vortex capturing by solution adaption. In present study, an unstructured Cartesian grid solver is developed on the basis of the existing Euler solver, NASCART-GT. Instead of cut-cell approach, immersed boundary approach is applied with ghost cell boundary condition, which can be easily applied to a moving grid solver. The standard $k-{\varepsilon}$ model by Launder and Spalding is employed for the turbulence modeling, and a new wall function approach is devised for the unstructured Cartesian grid solver. Developed approach is validated and the efficiency of the developed boundary condition is tested in 2-D flow field around a flat plate, NACA0012 airfoil, and axisymmetric hemispheroid.

Numerical Analysis on Recirculation Generated by Obstacles around a Cooling Tower (냉각탑 주위의 장애물에 의한 재순환 현상에 관한 수치해석)

  • Lee Jung-Hee;Choi Young-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.7
    • /
    • pp.578-586
    • /
    • 2006
  • The present study has been conducted to examine the effect of obstacles around a cooling tower and an air-guide to prevent recirculation. In order to analyze the interaction between external flow and cooling tower exit flow, the external region as well as the cooling, tower are included in computational domain. Two dimensional analysis is performed using the finite volume method with non-orthogonal and unstructured grid system. The standard ${\kappa}-{\varepsilon}$ turbulence model is used. To investigate the recirculation phenomena, flow and temperature fields are calculated with three approaches such as, the distance between cooling tower and obstacle, the allocated geometrical type, and the effect of height of obstacle. In addition, the air-guide is considered in the current computation. The mean recirculation rate increases with the height of obstacle. The effect of air-guide to reduce the mean recirculation rate is obviously observed.

A Computational Study of the Vortical Flows over a Delta Wing At High-Angle of Attack (고영각의 델타익에서 발생하는 와유동에 관한 수치해석적 연구)

  • Kim Hyun-Sub;Kweon Yong-Hun;Kim Heuy-Dong;Shon Myong-Hwan
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.795-798
    • /
    • 2002
  • This paper dispicts the vortical flow characteristics over a delta wing using a computational analysis for the purpose of investigating and visualizing the effect of the angle of attack and fee stream velocity on the low-speed delta wing aerodynamics. Computations are applied to the full, 3-dimensional, compressible, Navier-Stokes Equations. In computations, the free stream velocity is changed between 20m/s and 60m/s and the angle of attack of the delta wing is changed between $16^{\circ}\;and\;28^{\circ}$. For the correct prediction of the major features associated with the delta wing vortex flows, various turbulence models are tested. The standard $k-{\varepsilon}$ turbulence model predict well the vertical flows over the delta wing. Computational results are compared with the previous experimental ones. It is found that the present CFD results predict the vortical flow characteristics over the delta wing, and with an increase in the free steam velocity, the leading edge vortex moves outboard and its streangth is increased.

  • PDF

Numerical simulation of wind loading on roadside noise mitigation structures

  • TSE, K.T.;Yang, Yi;Shum, K.M.;Xie, Zhuangning
    • Wind and Structures
    • /
    • v.17 no.3
    • /
    • pp.299-315
    • /
    • 2013
  • Numerical research on four typical configurations of noise mitigation structures and their characteristics of wind loads are reported in this paper. The turbulence model as well the model parameters, the modeling of the equilibrium atmospheric boundary layer, the mesh discretization etc., were carefully considered in the numerical model to improve the numerical accuracy. Also a numerical validation of one configuration with the wind tunnel test data was made. Through detailed analyses of the wind load characteristics with the inclined part and the wind incidence angle, it was found that the addition of an inclined part to a noise mitigation structure at-grade would affect the mean nett pressure coefficients on the vertical part, and that the extent of this effect depends on the length of the inclined part itself. The magnitudes of the mean nett pressure coefficients for both the vertical part and the inclined part of noise mitigation structure at-grade tended to increase with length of inclined part. Finally, a comparison with the wind load code British/European Standard BS EN 1991-1-4:2005 was made and the envelope of the mean nett pressure coefficients of the noise mitigation structures was given for design purposes. The current research should be helpful to improve current wind codes by providing more reasonable wind pressure coefficients for different configurations of noise mitigation structures.

The simulation on the characteristics of ventilation in the subway platform (지하철 승가장내의 환기 특성에 관한 해석적 연구)

  • Park, B.S.;Kim, H.Y.;Kim, Y.G.
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.139-145
    • /
    • 2001
  • The purpose of present study is to find design parameters and operating conditions of the HVAC system in a subway platform. The simulation was carried out for the flow, heat and mass transfer for heating, ventilating and air-conditioning(HVAC) environments in the subway platform. The steady-state. incompressible flow assumption and standard $k-{\varepsilon}$ turbulence model are adopted. The location of HVAC air inlet above platform and the volume flow rate of curtain air released from inlet B are chosen as main parameters in this study. The results of present study are following: In the case of existence of train, the heat and contaminant released under the train have no effect on the average temperature and mass fraction of contaminant in the platform, but heat released on the train has influence on the average temperature in the platform. Train acts as an obstacle to exhaust the contaminant in the platform, but has good effect on the average temperature in the platform.

  • PDF