• 제목/요약/키워드: Standard for dynamic performance

검색결과 281건 처리시간 0.026초

An Improvement of Bin-slotted Anti-collision Algorithm for Ubiquitous ID System

  • Kim Ji-Yoon;Kang Bong-Soo;Yang Doo-Yeong
    • International Journal of Contents
    • /
    • 제2권1호
    • /
    • pp.34-38
    • /
    • 2006
  • In this paper, an overview of anti-collision algorithm for RFID system of a standard EPC Class1 protocol is presented, and the binslotted dynamic search algorithm (BDS) based upon the slotted ALOHA and binary tree procedure is proposed and analyzed. Also, the performance is evaluated as comparing the BDS algorithm with the standard bin-slotted algorithm (BSA) through the simulation program. The performance of the proposed BDS algorithm is improved by dynamically identifying the collided-bit position and the collided bins stored in the stack of the reader. As the results, the number of request command that a reader send to tags in the reader s interrogation zone and the total recognition time are decreased to 59% as compared with BSA algorithm. Therefore, the tag identification performance is fairly improved by resolving a collision problem using the proposed BDS algorithm.

  • PDF

Performance evaluation of suspended ceiling systems using shake table test

  • Ozcelik, Ozgur;Misir, Ibrahim S.;Saridogan, Serhan
    • Structural Engineering and Mechanics
    • /
    • 제58권1호
    • /
    • pp.121-142
    • /
    • 2016
  • The national standard being used in Turkey for suspended ceiling systems (SCS) regulates material and dimensional properties but does not contain regulations regarding installation instructions which cause substandard applications of SCSs in practice. The lack of installation instructions would potentially affect the dynamic performance of these systems. Also, the vast majority of these systems are manufactured using substandard low-quality materials, and this will inevitably increase SCS related damages during earthquakes. The experimental work presented here focuses on the issue of dynamic performance of SCSs with different types of carrier systems (lay-on and clip-in systems), different weight conditions, and material-workmanship qualities. Moreover, the effects of auxiliary fastening elements, so called seismic perimeter clips, in improving the dynamic performance of SCSs were experimentally investigated. Results show that clip-in ceiling system performs better than lay-on system regardless of material and workmanship qualities. On the other hand, the quality aspect becomes the most important parameter in affecting the dynamic performance of lay-on type systems as opposed to tile weights and usage of perimeter clips. When high quality system is used, tile weight does not change the performance of lay-on system, however in poor quality system, tile weight becomes an important factor where heavier tiles considerably decrease the performance level. Perimeter clips marginally increase the dynamic performance of lay-on ceiling system, but it has no effect on the clip-in ceiling system under the shaking levels considered.

HDR 이미지를 위한 단면 톤 매핑 개선 알고리즘 구현 (Improved Algorithm of Sectional Tone Mapping for HDR Images)

  • 이용환;김흥준
    • 반도체디스플레이기술학회지
    • /
    • 제20권2호
    • /
    • pp.137-140
    • /
    • 2021
  • High dynamic range (HDR) technology has been drawing attention in the field of imaging and consumer entertainment. As tools for capturing and creating HDR contents, encoding, and transmission evolve to support HDR formats, various display capabilities are being developed and increased. Hence, there is need for remapping native HDR imagery for display on lower quality legacy standard dynamic range (SDR) displays. This operation is referred to as tone mapping. In this paper, we present a sectional tone mapping method by Lenzen, and expand upon a tone mapping approach to improve temporal stability while maintaining picture quality. Compared to the existing block-based sectional tone mapping, our method uses the edge awareness-based tone mapping. We estimate the performance of the objective metric on temporal flickering. The experimental result shows that the algorithm maintains a smoother relationship between the output luminance values, and this reveals success in reducing halos and improving temporal stability with adopted edge aware filtering.

약한 AC 계통에서 동기조상기용 여자 시스템 특성에 따른 HVDC 과도 특성 (Dynamic Performance of HVDC According to Excitation System Characteristics of Synchronous Compensator in a Weak AC System)

  • 김찬기;김정부;심응보
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제49권6호
    • /
    • pp.431-440
    • /
    • 2000
  • This paper analyses the dynamic performance of HVDC System connected to a weak AC system for various exciter characteristics of synchronous machines connected at the converter bus. Conventionally capacitors are used to supply reactive power requirement at a strong converter bus. But the installation of synchronous machine is essential in a isolated weak network to re-start after a shutdown of HVDC and to increase system strength. The dynamic performance of a synchronous machine depends on the characteristics depends of its exciter. In this paper, several exciter types are used to investigate their effect on the dynamic performance of the HVDC system and modifications to standard exciter topologies are suggested to mitigate observed problems.

  • PDF

초정밀 직선 스테이지에서 5 자유도 운동의 정적 및 동적 성능 평가 (Performance Evaluation of Five-DOF Motion under Static and Dynamic Conditions of Ultra-precision Linear Stage)

  • 이재창;이광일;양승한
    • 한국정밀공학회지
    • /
    • 제31권5호
    • /
    • pp.423-430
    • /
    • 2014
  • In this study, the five-DOF motion at ultra-precision linear stage under static and dynamic conditions are evaluated through the extending application of ISO 230-2. As the performance factors, the bi-directional accuracy and repeatability of the five-DOF motion are quantitatively evaluated with the measurement uncertainties which are determined using the standard uncertainty of equipment used in experiment. The motion under static condition are analyzed using geometric errors. The five geometric errors except the linear displacement error are measured using optimal measurement system which is designed to enhance the standard uncertainty of geometric errors. In addition, the motion under dynamic conditions are analyzed with respect to the conditions with different feed rate of the stage. The experimental results shows that the feed rate of stage has a significant effect on straightness motions.

다구치의 표준 SN비를 이용한 이산형 시스템의 로버스트설계 (Robust Design of a Discrete System Using Taguchi's Standard Signal-to-Noise Ratio)

  • 김성준
    • 품질경영학회지
    • /
    • 제27권2호
    • /
    • pp.101-111
    • /
    • 1999
  • The purpose of Taguchi's robust design lies in quality improvement by making the performance of a system robust against noise. Robust design with continuous performance characteristics has been the subject of much interest. However relatively little work has been done for discrete characteristics such as 0-1, good-medium-bad, etc. This paper is concerned with robust design of a discrete dynamic system. We first investigate the Taguchi method for robust design with discrete dynamic characteristics and discuss his standard error probability (SEP). Then we propose a generalized SEP, which makes it possible to encompass a wider class of robust design problems. An illustration is also given by example.

  • PDF

충돌성능을 고려한 승용차 범퍼빔 단면의 최적화 (Optimization of Bumper Beam Section of Crashworthiness)

  • 강성종
    • 한국자동차공학회논문집
    • /
    • 제6권6호
    • /
    • pp.276-284
    • /
    • 1998
  • Optimum design of bumper beam is investigated using nonlinear CAE structural analysis techniques.In order to minimize its weight, while enhancing structural performances, bumper beam structural analyses were carried out to produce optimum section. Model is composed of bumper beam and stay. First, considering FMVSS safety standard, static strength and energy absorbing capability were estimated for several competitive bumpers through pendulum static analysis, and most promising section was chosen. Next, to ensure dynamic crashworthinesss performance for center pole impact was evaluated for the bumper beam with chosen section through pendulum static analysis, referring to DHS bumper dynamic impact standard. Finally, 2.5 mph bumper beam was designed and its structural performance was estimated. Through this investigation, an optimized bumper beam section with less weight of 20% while maintaining almost equal carshworthiness, compared with a conventional bumper beam section which proved its impact crashworthiness by experiments, was developed.

  • PDF

BF인증을 위한 바닥 마감재 미끄럼 성능기준 및 측정방법에 대한 연구 (A Study on Floor Slip Resistance Standard and Test Method for BF Certification)

  • 신동홍;성기창;박광재
    • 의료ㆍ복지 건축 : 한국의료복지건축학회 논문집
    • /
    • 제25권3호
    • /
    • pp.75-83
    • /
    • 2019
  • Purpose: There are no clear criteria for slip performance in the BF certification process, so the evaluator relies on subjective judgments depending on the field situation. Physical criteria for determining the slip performance of various floor finishes are not clear. C.S.R., the only criterion currently being used to check slip performance, may raise questions about its coverage, feasibility and reliability. Method: For an analysis of domestic standards and status, KS L 1001, KS M 3510, and KS F 2375. External standards are analyzed for ADA Standard, ANSI Standard, and BS EN Standard. Analyze the test methods and evaluation criteria of O-Y-PSM, BPT, and the dynamic slip resistance test used in these criteria. It also presents an improvement plan for the rational presentation of standards. Results: To date, various kinds of test methods and measuring devices of the slip resistance coefficient have been developed, but there are not many ways to trust useful results related to user safety. Reliability and thoroughly verified test methods and criteria should be used to assess the slip performance of the floor. In order to improve the standard for the evaluation of slip performance in Korea, the existing standard should first be raised to the same level as the overseas standard, and the application of the discriminatory standard should be applied considering the characteristics and usage patterns of each space. Implication: Currently, Korean standards propose various test methods, but the proper use of test methods, scope and assessment criteria are not established, so improvement of the comprehensive standard is necessary.

Numerical investigation of turbulent lid-driven flow using weakly compressible smoothed particle hydrodynamics CFD code with standard and dynamic LES models

  • Tae Soo Choi;Eung Soo Kim
    • Nuclear Engineering and Technology
    • /
    • 제55권9호
    • /
    • pp.3367-3382
    • /
    • 2023
  • Smoothed Particle Hydrodynamics (SPH) is a Lagrangian computational fluid dynamics method that has been widely used in the analysis of physical phenomena characterized by large deformation or multi-phase flow analysis, including free surface. Despite the recent implementation of eddy-viscosity models in SPH methodology, sophisticated turbulent analysis using Lagrangian methodology has been limited due to the lack of computational performance and numerical consistency. In this study, we implement the standard and dynamic Smagorinsky model and dynamic Vreman model as sub-particle scale models based on a weakly compressible SPH solver. The large eddy simulation method is numerically identical to the spatial discretization method of smoothed particle dynamics, enabling the intuitive implementation of the turbulence model. Furthermore, there is no additional filtering process required for physical variables since the sub-grid scale filtering is inherently processed in the kernel interpolation. We simulate lid-driven flow under transition and turbulent conditions as a benchmark. The simulation results show that the dynamic Vreman model produces consistent results with experimental and numerical research regarding Reynolds averaged physical quantities and flow structure. Spectral analysis also confirms that it is possible to analyze turbulent eddies with a smaller length scale using the dynamic Vreman model with the same particle size.

모멘트의 동적 변환에 의한 Kernel Relaxation의 성능과 RMSE (Performance and Root Mean Squared Error of Kernel Relaxation by the Dynamic Change of the Moment)

  • 김은미;이배호
    • 한국멀티미디어학회논문지
    • /
    • 제6권5호
    • /
    • pp.788-796
    • /
    • 2003
  • 본 논문에서는 순차적 학습 방법에서의 동적 모멘트를 제안한다. 동적 모멘트에서의 가변적인 모멘트를 이용하여 수렴 속도와 학습 성능을 향상시키며 회귀율에서도 이를 확인할 수 있다 제안된 학습 방법은 기존의 정적모멘트와는 달리 수렴 정도에 따라 현재의 학습에 과거의 학습률을 달리 반영하는 방법이다. 기존의 정적 상수로 정의된 모멘트가 전체 학습에 동등하게 영향을 주는 반면 제안된 동적모멘트를 이용한 학습 방법은 학습 수행에 따라 동적으로 모멘트를 변경함으로써 수렴 속도와 학습 성능을 효과적으로 제어할 수 있다. 이전의 분류문제와 회귀문제의 분리확인과는 달리 본 논문에서는 제안된 동적모멘트의 성능과 회귀율을 동시에 확인한다. 본 논문에서 사용한 회귀방법은 RMS 오류율을 사용하였으며 제안된 학습방법인 동적모멘트를 SVM(Support Vector Machine)의 순차 학습방법인 KA(Kernel Adatron)과 KR(Kernel Relaxation)에 적용하여 RMS 오류율을 확인하였다. 공정한 학습 성능 평가를 위해 신경망 분류기표준평가데이터인 SONAR 데이터를 이용하였으며 실험 결과 동적모멘트를 이용한 학습 성능과 수렴 속도 및 RMS 오류율이 정적모멘트를 이용한 학습방법보다 향상되었음을 확인하였다.

  • PDF