• 제목/요약/키워드: Standard finite element model

검색결과 273건 처리시간 0.035초

Ultimate capacity of welded box section columns with slender plate elements

  • Shen, Hong-Xia
    • Steel and Composite Structures
    • /
    • 제13권1호
    • /
    • pp.15-33
    • /
    • 2012
  • For an axially loaded box-shaped member, the width-to-thickness ratio of the plate elements preferably should not be greater than 40 for Q235 steel grades in accordance with the Chinese code GB50017-2003. However, in practical engineering the plate width-to-thickness ratio is up to 120, much more than the limiting value. In this paper, a 3D nonlinear finite element model is developed that accounts for both geometrical imperfections and residual stresses and the ultimate capacity of welded built-up box columns, with larger width-to-thickness ratios of 60, 70, 80, and 100, is simulated. At the same time, the interaction buckling strength of these members is determined using the effective width method recommended in the Chinese code GB50018-2002, Eurocode 3 EN1993-1 and American standard ANSI/AISC 360-10 and the direct strength method developed in recent years. The studies show that the finite element model proposed can simulate the behavior of nonlinear buckling of axially loaded box-shaped members very well. The width-to-thickness ratio of the plate elements in welded box section columns can be enlarged up to 100 for Q235 steel grades. Good agreements are observed between the results obtained from the FEM and direct strength method. The modified direct strength method provides a better estimation of the column strength compared to the direct strength method over the full range of plate width-to-thickness ratio. The Chinese code and Eurocode 3 are overly conservative prediction of column capacity while the American standard provides a better prediction and is slightly conservative for b/t = 60. Therefore, it is suggested that the modified direct strength method should be adopted when revising the Chinese code.

Stochastic finite element based seismic analysis of framed structures with open-storey

  • Manjuprasad, M.;Gopalakrishnan, S.;Rao, K. Balaji
    • Structural Engineering and Mechanics
    • /
    • 제15권4호
    • /
    • pp.381-394
    • /
    • 2003
  • While constructing multistorey buildings with reinforced concrete framed structures it is a common practice to provide parking space for vehicles at the ground floor level. This floor will generally consist of open frames without any infilled walls and is called an open-storey. From a post disaster damage survey carried out, it was noticed that during the January 26, 2001 Bhuj (Gujarat, India) earthquake, a large number of reinforced concrete framed buildings with open-storey at ground floor level, suffered extensive damage and in some cases catastrophic collapse. This has brought into sharp focus the need to carry out systematic studies on the seismic vulnerability of such buildings. Determination of vulnerability requires realistic structural response estimations taking into account the stochasticity in the loading and the system parameters. The stochastic finite element method can be effectively used to model the random fields while carrying out such studies. This paper presents the details of stochastic finite element analysis of a five-storey three-bay reinforced concrete framed structure with open-storey subjected to standard seismic excitation. In the present study, only the stochasticity in the system parameters is considered. The stochastic finite element method used for carrying out the analysis is based on perturbation technique. Each random field representing the stochastic geometry/material property is discretised into correlated random variables using spatial averaging technique. The uncertainties in geometry and material properties are modelled using the first two moments of the corresponding parameters. In evaluating the stochastic response, the cross-sectional area and Young' modulus are considered as independent random fields. To study the influence of correlation length of random fields, different correlation lengths are considered for random field discretisation. The spatial expectations and covariances for displacement response at any time instant are obtained as the output. The effect of open-storey is modelled by suitably considering the stiffness of infilled walls in the upper storey using cross bracing. In order to account for changes in soil conditions during strong motion earthquakes, both fixed and hinged supports are considered. The results of the stochastic finite element based seismic analysis of reinforced concrete framed structures reported in this paper demonstrate the importance of considering the effect of open-storey with appropriate support conditions to estimate the realistic response of buildings subjected to earthquakes.

고강도 알루미늄 합금을 적용한 수직 사다리 개발 연구 (Development of the Vertical Ladder using a High-Strength Aluminium Alloys (6082-T6))

  • 김성준;서광철;박주신
    • 해양환경안전학회지
    • /
    • 제26권6호
    • /
    • pp.698-705
    • /
    • 2020
  • 본 논문에서는 해양플랜트에 주로 사용되는 알루미늄 사다리의 독자 모델을 개발하기 위하여, 개량형 알루미늄 합금(6082-T6)을 적용하고 국제 기준에 부합한 구조강도 설계를 하였다. 국제기준은 ISO, NORSOK, Austria Standard를 참고하였으며, 모든 조건이 만족할 수 있도록 하중 조합을 하였다. 설계된 모델은 유한요소법 [Finite elements method]을 근간으로 하는 해양플랜트 전용 해석프로그램인 SACS를 사용하여 구조 안전성을 검증하여 응력 및 처짐이 모두 허용기준 이내에 만족함을 확인하였다. 개발모델은 모든 허용기준을 만족하면서도 가볍고, 생산성이 향상되어 향후 많은 분야에서 사용이 될 것으로 기대해본다.

기존 지하철정거장 비개착공법 적용시 유한요소 해석과 관리기준에 관한 연구 (A Study on the Finite Element Analysis and Management Criteria by Applying UPRS Method in the Subway Station)

  • 조병준
    • 한국방재안전학회논문집
    • /
    • 제12권4호
    • /
    • pp.43-52
    • /
    • 2019
  • 지하철 정거장의 하부에 비개착공법 적용하여 안정성 영향분석을 위하여 유한요소 변위 해석, 유한요소 응력해석, 강관추진 진행 과정에 따른 변위, 내부 굴착에 따른 변위 및 강관의 응력변화, 지반의 물리적 특성인 탄성 및 탄소성 이론 등을 도입하였다. 구조적으로 적당한 미소 요소로 분할해서 각 요소가 유한개의 점으로 연결되는 요소로 가정한 모델로 하여 수치적 해석을 통하여 비개착공법 적용시 구조물 안정성에 미치는 영향을 국토교통부와 외국 자료를 근간으로 한 구조물 관리기준과 비교 검토하였다. 그 결과 최대 변위 7.21 mm가 발생되어 허용변위 기준(25.00 mm) 이내, 최대 각 변위는 1/3,950으로 허용 각변위 기준(1/500) 이내, 비개착공법 강관다발 구조체의 최대 휨압축응력량도 70.29 MPa로 허용기준(210.00 MPa) 이내로 분석되었고, 최대 전단응력량은 47.38 MPa로 허용기준(120 MPa) 이내로 분석되어 유한요소 해석결과, 설계 및 시공 안정성을 검증하였다.

Numerical modeling of rapid impact compaction in loose sands

  • Ghanbari, Elham;Hamidi, Amir
    • Geomechanics and Engineering
    • /
    • 제6권5호
    • /
    • pp.487-502
    • /
    • 2014
  • A three dimensional finite element model was used to simulate rapid impact compaction (RIC) in loose granular soils using ABAQUS software for one impact point. The behavior of soil under impact loading was expressed using a cap-plasticity model. Numerical modeling was done for a site in Assalouyeh petrochemical complex in southern Iran to verify the results. In-situ settlements per blow were compared to those in the numerical model. Measurements of improvement by depth were obtained from the in-situ standard penetration, plate loading, and large density tests and were compared with the numerical model results. Contours of the equal relative density clearly showed the efficiency of RIC laterally and at depth. Plastic volumetric strains below the anvil and the effect of RIC set indicated that a set of 10 mm can be considered to be a threshold value for soil improvement using this method. The results showed that RIC strongly improved the soil up to 2 m in depth and commonly influenced the soil up to depths of 4 m.

응집영역모델을 이용한 다공질 재료의 파괴 거동 연구 (Analysis for Fracture Characteristics of Porous Materials by using Cohesive Zone Models)

  • 최승현;하상렬;김기태
    • 대한기계학회논문집A
    • /
    • 제33권6호
    • /
    • pp.552-559
    • /
    • 2009
  • The effect of porosity on the crack propagation is studied by using the cohesive zone model. Standard mode I fracture test were done by using compact tension specimens with various porosities. Load-load line displacement curves and ${\delta}_5$-crack resistance curves for various porosities were obtained from experiments. The cohesive zone model proposed by Xu and Needleman was employed to describe the crack propagation in porous media, and the Gurson model is used for constitutive relation of porous materials. These models were implemented into user subroutines of a finite element program ABAQUS. The fracture mode changes from ductile fracture to brittle fracture as the porosity increases. Numerical calculations agree well with experimental results.

모래다짐말뚝 개량폭에 따른 보강효과에 관한 연구 (A Study on Effect of Ground Improvement by Sand Compaction Pile Changing Replacement Width)

  • 김시운;정길수;박병수;유남재
    • 산업기술연구
    • /
    • 제25권A호
    • /
    • pp.67-73
    • /
    • 2005
  • In this research, centrifuge model experiments and numerical approach of finite element method to analyze experimental results were performed to investigate the behavior of improved ground with sand compaction piles. One of typical clay minerals, kaolinite powder, were prepared for soft ground in model tests. Jumunjin standard sand was used to sand compaction pile installed in the soft soil. In order to investigate the characteristics of mechanical behavior of sand compaction piles with low replacement ratios, centrifuge model experiments with the replacement ratio of 40%, changing the width of improved area with respect to testing results the width of surcharge loads, were carried out to obtain of bearing capacity, characteristics of load-settlement, vertical stresses acting on the sand pile and the soft soil failure mechanism in improved ground.

  • PDF

Electret-based microgenerators under sinusoidal excitations: an analytical modeling

  • Nguyen, Cuong C.;Ranasinghe, Damith C.;Al-Sarawi, Said F.
    • Smart Structures and Systems
    • /
    • 제21권3호
    • /
    • pp.335-347
    • /
    • 2018
  • The fast-growing number of mobile and wearable applications has driven several innovations in small-scale electret-based energy harvesting due to the compatibility with standard microfabrication processes and the ability to generate electrical energy from ambient vibrations. However, the current modeling methods used to design these small scale transducers or microgenerators are applicable only for constant-speed rotations and small sinusoidal translations, while in practice, large amplitude sinusoidal vibrations can happen. Therefore, in this paper, we formulate an analytical model for electret-based microgenerators under general sinusoidal excitations. The proposed model is validated using finite element modeling combined with numerical simulation approaches presented in the literature. The new model demonstrates a good agreement in estimating both the output voltage and power of the microgenerator. This new model provides useful insights into the microgenerator operating mechanism and design trade-offs, and therefore, can be utilized in the design and performance optimization of these small structures.

Simulation of superelastic SMA helical springs

  • Mehrabi, Reza;Ravari, Mohammad Reza Karamooz
    • Smart Structures and Systems
    • /
    • 제16권1호
    • /
    • pp.183-194
    • /
    • 2015
  • Shape memory alloy (SMA) helical springs have found a large number of different applications in industries including biomedical devices and actuators. According to the application of SMA springs in different actuators, they are usually under tension and torsion loadings. The ability of SMAs in recovering inelastic strains is due to martensitic phase transformation between austenite and martensite phases. Stress or temperature induced martensite transformation induced of SMAs is a remarkable property which makes SMA springs more superior in comparison with traditional springs. The present paper deals with the simulation of SMA helical spring at room temperature. Three-dimensional phenomenological constitutive model is used to describe superelastic behavior of helical spring. This constitutive model is implemented as a user subroutine through ABAQUS STANDARD (UMAT), and the process of the implementation is presented. Numerical results show that the developed constitutive model provides an appropriate approach to captures the general behavior of SMA helical springs.

Fracture properties of concrete using damaged plasticity model -A parametric study

  • Kalyana Rama, J.S.;Chauhan, D.R.;Sivakumar, M.V.N;Vasan, A.;Murthy, A. Ramachandra
    • Structural Engineering and Mechanics
    • /
    • 제64권1호
    • /
    • pp.59-69
    • /
    • 2017
  • The field of fracture mechanics has gained significance because of its ability to address the behaviour of cracks. Predicting the fracture properties of concrete based on experimental investigations is a challenge considering the quasi-brittle nature of concrete. So, there is a need for developing a standard numerical tool which predicts the fracture energy of concrete which is at par with experimental results. The present study is an attempt to evaluate the fracture energy and characteristic length for different grades of concrete using Concrete Damage Plasticity (CDP) model. Indian Standard and EUROCODE are used for the basic input parameters of concrete. Numerical evaluation is done using Finite Element Analysis Software ABAQUS/CAE. Hsu & Hsu and Saenz stress-strain models are adopted for the current study. Mesh sensitivity analysis is also carried to study the influence of type and size of elements on the overall accuracy of the solution. Different input parameters like dilatation angle, eccentricity are varied and their effect on fracture properties is addressed. The results indicated that the fracture properties of concrete for various grades can be accurately predicted without laboratory tests using CDP model.