• Title/Summary/Keyword: Standard brain

Search Result 306, Processing Time 0.033 seconds

Designing an Emotional Intelligent Controller for IPFC to Improve the Transient Stability Based on Energy Function

  • Jafari, Ehsan;Marjanian, Ali;Solaymani, Soodabeh;Shahgholian, Ghazanfar
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.478-489
    • /
    • 2013
  • The controllability and stability of power systems can be increased by Flexible AC Transmission Devices (FACTs). One of the FACTs devices is Interline Power-Flow Controller (IPFC) by which the voltage stability, dynamic stability and transient stability of power systems can be improved. In the present paper, the convenient operation and control of IPFC for transient stability improvement are considered. Considering that the system's Lyapunov energy function is a relevant tool to study the stability affair. IPFC energy function optimization has been used in order to access the maximum of transient stability margin. In order to control IPFC, a Brain Emotional Learning Based Intelligent Controller (BELBIC) and PI controller have been used. The utilization of the new controller is based on the emotion-processing mechanism in the brain and is essentially an action selection, which is based on sensory inputs and emotional cues. This intelligent control is based on the limbic system of the mammalian brain. Simulation confirms the ability of BELBIC controller compared with conventional PI controller. The designing results have been studied by the simulation of a single-machine system with infinite bus (SMIB) and another standard 9-buses system (Anderson and Fouad, 1977).

Development and Evaluation of the Usefulness for Hoffman Brain Phantom Based on 3D Printing Technique (3D 프린팅 기법 기반의 Hoffman Brain 팬텀 개발 및 유용성 평가)

  • Park, Hoon-Hee;Lee, Joo-Young
    • Journal of radiological science and technology
    • /
    • v.42 no.6
    • /
    • pp.441-446
    • /
    • 2019
  • The purpose of this paper is to recognize the usefulness of the Phantom produced with 3D printing technology by reproducing the original phantom with 3D printing technology. Using CT, we obtained information from the original phantom. The acquired file was printed by the SLA method of ABS materials. For inspection, SPECT/CT was used to obtain images. We filled the both Phantom with a solution mixed with 99mTcO4 1 mCi in 1 liter of water and acq uired images in accordance with the standard protocol. Using Image J, the SNR for each slice of the image was obtained. As a reference images, AC images were used. For the analysis of acquired images, ROI was set in the White mater and Gray mater sections of each image, and the average Intensity Value within the ROI were compared. According to the results of this study, 3D printed phantom's SNR is about 0.1 higher than the conventional phantom. And the ratio of Intensity Value was shown in the original 1 : 3.4, and the printed phantom was shown to be 1 : 3.2. Therefore, if Calibration Value is applied, It is assumed that it can be used as an alternative to the original.

Optimal EEG Feature Extraction using DWT for Classification of Imagination of Hands Movement

  • Chum, Pharino;Park, Seung-Min;Ko, Kwang-Eun;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.6
    • /
    • pp.786-791
    • /
    • 2011
  • An optimal feature selection and extraction procedure is an important task that significantly affects the success of brain activity analysis in brain-computer interface (BCI) research area. In this paper, a novel method for extracting the optimal feature from electroencephalogram (EEG) signal is proposed. At first, a student's-t-statistic method is used to normalize and to minimize statistical error between EEG measurements. And, 2D time-frequency data set from the raw EEG signal was extracted using discrete wavelet transform (DWT) as a raw feature, standard deviations and mean of 2D time-frequency matrix were extracted as a optimal EEG feature vector along with other basis feature of sub-band signals. In the experiment, data set 1 of BCI competition IV are used and classification using SVM to prove strength of our new method.

Real-time Detection of Trace Copper in Brain and Kidney of Fish for Medical Diagnosis

  • Yang, Young Kyun;Pack, Eun Chul;Lee, Seung Ha;Yoo, Hai-Soo;Choi, Dal Woong;Ly, Suw Young
    • Toxicological Research
    • /
    • v.30 no.4
    • /
    • pp.311-316
    • /
    • 2014
  • For the detection of trace copper to be used in medical diagnosis, a sensitive handmade carbon nanotube paste electrode (PE) was developed using voltammetry. Analytical optimized conditions were found at 0.05 V anodic peak current. In the same conditions, various common electrodes were compared using stripping voltammetry, and the PE was found to be more sharply sensitive than other common electrodes. At optimum conditions, the working ranges of $3{\sim}19{\mu}gL^{-1}$ were obtained. The relative standard deviation of $70.0{\mu}gL^{-1}$ was determined to be 0.117% (n = 15), and the detection limit (S/N) was found to be $0.6{\mu}gL^{-1}$ ($9.4{\times}10^{-9}M$). The results were applied in detecting copper traces in the kidney and the brain cells of fish.

Design of Standard Value Intracranial Translucency of Fetus in Early Pregnancy Using Ultrasound (초음파를 이용한 임신초기 태아의 두개내투명대 표준치 제시)

  • Yang, Sung-Hee;Kim, Changsoo
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.2
    • /
    • pp.131-137
    • /
    • 2021
  • The purpose of this study was to present the reference value of the intracranial translucency(IT) of the fetus using the mid sagittal plane of the post brain in the early pregnancy ultrasound screening test and to find the clinical significance. From August 2018 to February 2020, the IT of 1529 singleton fetus whose crown lump length were 40.6 mm to 78.3 mm in length among the mothers undergoing regular checkups at Hospital I were measured and analyzed retrospectively. As the crown lump length increased, the IT showed a 54.3% explanatory power and tended to increase(p<0.001). In addition, through frequency analysis, the standard value for the percentile of the IT by gestational weeks was calculated. As a result, it was possible to establish a standard value for Koreans with an IT, and it will be usefully applied as an auxiliary screening test for spina bifida in the evaluation of fetal post brain in early pregnancy.

Effect of Glucose Level on Brain FDG-PET Images (FDG를 이용한 Brain PET에서 Glucose Level이 영상에 미치는 영향)

  • Kim, In-Yeong;Lee, Yong-ki;Ahn, Sung-Min
    • Journal of radiological science and technology
    • /
    • v.40 no.2
    • /
    • pp.275-280
    • /
    • 2017
  • In addition to tumors, normal tissues, such as the brain and myocardium can intake $^{18}F$-FDG, and the amount of $^{18}F$-FDG intake by normal tissues can be altered by the surrounding environment. Therefore, a process is necessary during which the contrasts of the tumor and normal tissues can be enhanced. Thus, this study examines the effects of glucose levels on FDG PET images of brain tissues, which features high glucose activity at all times, in small animals. Micro PET scan was performed on fourteen mice after injecting $^{18}F$-FDG. The images were compared in relation to fasting. The findings showed that the mean SUV value w as 0.84 higher in fasted mice than in non-fasted mice. During observation, the images from non-fasted mice showed high accumulation in organs other than the brain with increased surrounding noise. In addition, compared to the non-fasted mice, the fasted mice showed higher early intake and curve increase. The findings of this study suggest that fasting is important in assessing brain functions in brain PET using $^{18}F$-FDG. Additional studies to investigate whether caffeine levels and other preprocessing items have an impact on the acquired images would contribute to reducing radiation exposure in patients.

Invasive Brain Stimulation and Legal Regulation: with a special focus on Deep Brain Stimulation (침습적 뇌자극기술과 법적 규제 - 뇌심부자극술(Deep Brain Stimulation)을 중심으로 -)

  • Choi, Min-Young
    • The Korean Society of Law and Medicine
    • /
    • v.23 no.2
    • /
    • pp.119-139
    • /
    • 2022
  • Brain stimulation technology that administers electrical and magnetic stimulation to a brain has shown a significant level of possibility for treating a wide range of various neurological and psychiatric disorders. Depending on its nature, the technology is defined either as invasive or non-invasive, and deep brain stimulation (DBS) is one of the most well-known invasive brain stimulation technologies. Currently categorized as grade 4 medical device in accordance with Guideline On Medical Devices And Their Grades, a Notification of Ministry of Food and Drug Safety (MFDS), the DBS has been used as a stable treatment for several diseases. At the same time, the DBS technology has recently achieved substantial advancement, encouraging active discussions for its use from various perspectives. On the contrary, debates over legal regulation related to the use of DBS has relatively been smaller in numbers. In this context, this article aims to 1) introduce the DBS technology and its safety in setting out the tone; 2) touch upon major legal issues that would potentially rise from its use for four different purposes of treatment, clinical study, areas of non-standard treatment where no other methods are available, and enhancement; and finally 3) highlight disputes concerning common emerging issues observed in the aforementioned four purposes from the viewpoint of legal responsibility and liability of using the DBS, which are benefit-risk assessment, physicians' duty of information, patients' capacity to consent, control for device, and insurance coverage.

Profile and Outcome of Management of Brain Tumours in Kaduna Northwestern Nigeria

  • Danjuma, Sale;Dauda, Happy Amos;Kene, Aghadi Ifeanyi;Akau, Kache Stephen;Jinjiri, Ismail Nasiru
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.5
    • /
    • pp.751-757
    • /
    • 2022
  • Objective : Tumours of the brain are a rare occurrence accounting for approximately 2% of all neoplasms in adults. Few studies have been done in Nigeria on the profile of brain tumours. The aim of this study is to determine the profile of brain tumours in general and determine the change in Kanofsky Performance Score (KPS) after treatment. Methods : This is a prospective hospital-based study in Kaduna. All consecutive patients over 18 years of age with diagnosis of brain tumours from January 2016 to December 2019 were included in the study. Demographic and clinical data was collected using a proforma during the study. Patients who received treatment were followed up for 12 months. The primary outcome data was the difference in the quality of life as measured by KPS at the point of first contact and at 1-month after treatment and at 12-month follow up. Data obtained was analysed with SPSS version 25.0 for Windows. Descriptive statistics was done to determine the profile. Paired t-test at 95% confidence interval was done to check for significant correlation between the mean KPS. Results : A total of 39 consecutive patients were included in the study. There was a slight male preponderance with a M : F of 1.17 : 1. Meningioma and metastasis were more common in females while gliomas and pituitary tumours were more common in males. The mean age of patients was 49.8 years and standard deviation of 11.8 years. Pituitary tumours were the most common tumours. The most common location of the tumour was frontal lobe followed by the pituitary gland. The mean duration of symptoms before neurosurgical consultation was 38 weeks. The most common presenting symptoms of patient with brain tumour was headache. The quality of life improve compare to the baseline in 81% of patient at discharge and at 1 year follow up. The overall mortality rate was 25.6%. Conclusion : The most common brain tumour in our study is pituitary tumour. Most patients present late. The most common presenting symptoms is headache. There is significant improvement in the KPS of patients following treatment. The overall mortality rate at 1-year post treatment is 25.6%.

Classification System of EEG Signals for Mental Action (정신활동에 의한 EEG신호의 분류시스템)

  • 김민수;김기열;정대영;서희돈
    • Proceedings of the IEEK Conference
    • /
    • 2003.07c
    • /
    • pp.2875-2878
    • /
    • 2003
  • In this paper, we propose an EEG-based mental state prediction method during a mental tasks. In the experimental task, a subject goes through the process of responding to visual stimulus, understanding the given problem, controlling hand motions, and hitting a key. Considering the subject's varying brain activities, we model subjects' mental states with defining selection time. EEG signals from four subjects were recorded while they performed three mental tasks. Feature vectors defined by these representations were classified with a standard, feed-forward neural network trained via the error back-propagation algorithm. We expect that the proposed detection method can be a basic technology for brain-computer interface by combining with left/right hand movement or cognitive decision discrimination methods.

  • PDF

Microfluidic cell sizing using hydrophoretic size-based separation (유체영동 기반의 입자분리현상을 이용한 세포 크기 측정방법)

  • Choi, Sung-Young;Park, Je-Kyun
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.245-249
    • /
    • 2008
  • This paper presents a microfluidic cell sizing method using hydrophoretic size-based separation. By exploiting slanted obstacles in a microchannel, we can generate a lateral pressure gradient so that microparticles can be deflected and arranged along lateral flows induced by the gradient. Using such movement of particles, we discriminated 8 to 15 μm-sized beads. We measured the size of U937 cells by comparing the hydrophoretic response of the cells to those of the size-standard beads whose diameters are known. Due to its simple design and fabrication, the sizing method can be easily integrated with other microfluidic components such as cell culture chambers conducting on-chip sizing and sorting.