• Title/Summary/Keyword: Standard Wall Function

Search Result 69, Processing Time 0.022 seconds

Assessment of two-equation turbulent models in FLUENT for a turbulent heated pipe flow (열유속이 있는 난류 원관 유동에의 FLUENT의 2방정식 난류모델의 적용성 판단)

  • Moon C. M.;Baek S. G.;Park S. O.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2003.08a
    • /
    • pp.158-163
    • /
    • 2003
  • This paper assesses the two-equation turbulence models available in a commercial code, FLUENT, for heat transfer in a turbulent heated pipe flow. In case of flow under $Re_D=10,000$, Standard $\kappa-\epsilon$ and Realizable $\kappa-\epsilon$ models overpredict the Nusselt number about $20\%$ compared with the experimental correlation, and RNG $\kappa-\epsilon$ model overpredicts about $30\%$ when the two-layer zonal method is employed. When wall function method is adopted, all $\kappa-\epsilon$ models show better predictions. Standard $\kappa-\omega$ and SST $\kappa-\omega$ models have the dependency on the first grid point ($0.3). As Reynolds number becomes high, the predictions of all $\kappa-\epsilon$ and $\kappa-\omega$ models are in a good agreement with the experimental correlation.

  • PDF

Assessment of RANS Models for 3-D Flow Analysis of SMART

  • Chun Kun Ho;Hwang Young Dong;Yoon Han Young;Kim Hee Chul;Zee Sung Quun
    • Nuclear Engineering and Technology
    • /
    • v.36 no.3
    • /
    • pp.248-262
    • /
    • 2004
  • Turbulence models are separately assessed for a three dimensional thermal-hydraulic analysis of the integral reactor SMART. Seven models (mixing length, k-l, standard $k-{\epsilon},\;k-{\epsilon}-f{\mu},\;k-{\epsilon}-v2$, RRSM, and ERRSM) are investigated for flat plate channel flow, rotating channel flow, and square sectioned U-bend duct flow. The results of these models are compared to the DNS data and experiment data. The results are assessed in terms of many aspects such as economical efficiency, accuracy, theorization, and applicability. The standard $k-{\epsilon}$ model (high Reynolds model), the $k-{\epsilon}-v2$ model, and the ERRSM (low Reynolds models) are selected from the assessment results. The standard $k-{\epsilon}$ model using small grid numbers predicts the channel flow with higher accuracy in comparison with the other eddy viscosity models in the logarithmic layer. The elliptic-relaxation type models, $k-{\epsilon}-v2$, and ERRSM have the advantage of application to complex geometries and show good prediction for near wall flows.

A Study on the Characteristics of the Flow around a Sunken Vessel (침선어초 주위의 유동특성에 관한 연구)

  • 양찬규;김현주
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.4
    • /
    • pp.9-16
    • /
    • 2000
  • This paper deals with the numerical and experimental study on the characteristics of the flow around a sunken vessel. Numerical simulation of the two dimensional steady flow on the midship section are carried out by the CFD code which is developed by using finite volume method and which includes the standard $textsc{k}$-$\varepsilon$ model with standard wall function. A experimental study is also carried out for the 1/100 scale model in circulating water channel. A velocity fields around the ship are measuremed by using particle image velocimetry technique. And the fluid forces acting on the ship hull by uniform current are measured by two axis load cell. The computed and measured velocity fields on the midship section are compared with each other in the view point of velocity dstribution and reattachement length, which shows good agreement in quality. The drag force on the vessel also showed the same tendency in both computational and experimental results. However, the quantitative disagreements are shown due to the three dimensional effect of the experiment. The result are used to determine the functional efficiency and stability of the vessel as a artificial reef.

  • PDF

Unsteady Analysis of Impeller-Volute Interaction in Centrifugal Pump

  • Cheah, Kean Wee;Lee, Thong See;Winoto, Sonny H.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.3
    • /
    • pp.349-359
    • /
    • 2011
  • An unsteady numerical analysis has been carried out to study the strong impeller volute interaction of a centrifugal pump with six backward swept blades shrouded impeller. The numerical analysis is done by solving the three-dimensional Reynolds Averaged Navier-Stokes codes with standard k-${\varepsilon}$ two-equations turbulence model and wall regions are modeled with a scalable log-law wall function. The flow within the impeller passage is very smooth and following the curvature of the blade in stream-wise direction. However, the analysis shows that there is a recirculation zone near the leading edge even at design point. When the flow is discharged into volute casing circumferentially from the impeller outlet, the high velocity flow is severely distorted and formed a spiraling vortex flow within the volute casing. A spatial and temporal wake flow core development is captured dynamically and shows how the wake core diffuses. Near volute tongue region, the impeller/volute tongue strong interaction is observed based on the periodically fluctuating pressure at outlet. The results of existing analysis also proved that the pressure fluctuation periodically is due to the position of impeller blade relative to tongue.

A Study on the Thermal Analysis of Spray Cooling for the Membrane Type LNGC During the Cool-Down Period (급냉각기간에서 멤브레인형 LNGC의 분무냉각 열해석에 관한 연구)

  • Lee, Jung-Hye;Kim, Kyung-Kue;Ro, Sung-Tack;Chung, Han-Shik;Kim, Seong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.125-134
    • /
    • 2003
  • The present paper is concerned to the thermal analysis during the cool-down period of 138,000 m$^3$class GTT MARK-III membrane type LNG carrier servicing with LNG from the Middle East to Korea. It is the cool-down period that cools the insulation wall and the gas in LNG tank to avoid the thermal shock as the start of loading of -162$^{\circ}C$ LNG. For six hours of the standard cool-down period, the temperature of NG falls down from -4$0^{\circ}C$ to -13$0^{\circ}C$ and especially the mean temperature of the 1st barrier in the top side insulation wall falls down from -38.38$^{\circ}C$ to -122.42$^{\circ}C$ in case of IMO design condition. By the 3-D numerical calculation about the cargo tank and the cofferdam, the temperature variation in hulls and insulations is precisely predicted in this paper. And the mean temperature variation of gas is calculated as the function of the spraying rate by the heat balance model during the cool-down period.

Numerical Analysis of Combustion Characteristics during Mode Transfer Period in a Lean Premixed Gas Turbine for Power Generation (발전용 희박예혼합 가스터빈에서 연소모드변환 시기의 연소특성 해석)

  • Chung Jae Hwa;Seo Seok Bin;Kim Jong Jin;Cha Dong Jin;Ahn Dal Hong
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.279-282
    • /
    • 2002
  • Recently, gas turbines for power generation adopt multistage DLN(Dry Low NOx) type combustion, where diffusion combustion is applied at low load and, with increase in load, the combustion mode is changed to lean premixed combustion to reduce NOx emissive concentration. However, during the mode changeover from diffusion to premixed flame, unfavorable phenomena, such as flashback, high amplitude combustion oscillations, or thermal damage of combustor parts could frequently occur. In the present study, to apply for the analysis of such unfavorable phenomena, three-dimensional CFD investigations are carried out to compare the detailed flow characteristics and temperature distribution inside the gas turbine combustor before and after combustion mode changeover. The fuel considered here is pure methane gas. A standard $k-{\varepsilon}$ turbulence model with wall function and a P-N type radiation heat transfer model, have been utilized. To analyze the complex geometric effects of combustor parts on combustion characteristics, fuel nozzles, a swirl vane f3r fuel-air mixing, and cooling air holes on the combustor liner wall, are included in this simulation.

  • PDF

Three-dimensional Turbulent Flow Analysis in Curved Piping Systems Susceptible to Flow-Accelerated Corrosion (유동가속부식이 잠재한 곡관내의 3차원 난류유동 해석)

  • Jo, Jong-Chull;Kim, Yun-Il;Choi, Seok-Ki
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.900-907
    • /
    • 2000
  • The three-dimensional turbulent flow in curved pipes susceptible to flow-accelerated corrosion has been analyzed numerically to predict the pressure and shear stress distributions on the inner surface of the pipes. The analysis employs the body-fitted non-orthogonal curvilinear coordinate system and a standard $ {\kappa}-{\varepsilon}$ turbulence model with wall function method. The finite volume method is used to discretize the governing equations. The convection term is approximated by a high-resolution and bounded discretization scheme. The cell-centered, non-staggered grid arrangement is adopted and the resulting checkerboard pressure oscillation is prevented by the application of a modified version of momentum interpolation scheme. The SIMPLE algorithm is employed for the pressure and velocity coupling. The numerical calculations have been performed for two curved pipes with different bend angles and curvature radii, and discussions have been made on the distributions of the primary and secondary flow velocities, pressure and shear stress on the inner surface of the pipe to examine applicability of the present analysis method. As the result it is seen that the method is effective to predict the susceptible systems or their local areas where the fluid velocity or local turbulence is so high that the structural integrity can be threatened by wall thinning degradation due to flow-accelerated corrosion.

  • PDF

Drift Ratio-based Fragility Functions for Diagonally Reinforced Concrete Coupling Beams (대각보강된 철근콘크리트 연결보의 변위비 기반 취약도 함수 개발)

  • Lee, Chang Seok;Han, Sang Whan;Koh, Hyeyoung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.131-140
    • /
    • 2019
  • Diagonally reinforced concrete coupling beams (DRCBs) have been widely adopted in reinforced concrete (RC) bearing wall systems. DRCBs are known to act as a fuse element dissipating most of seismic energies imparted to the bearing wall systems during earthquakes. Despite such importance of DRCBs, the damage estimation of such components and the corresponding consequences within the knowledge of performance based seismic design framework is not well understood. In this paper, drift-based fragility functions are developed for in-plane loaded DRCBs. Fragility functions are developed to predict the damage and to decide the repair method required for DRCBs subjected to earthquake loading. Thirty-seven experimental results are collected from seventeen published literatures for this effort. Drift-based fragility functions are developed for four damage states of DRCBs subjected to cyclic and monotonic loading associated with minor cracking, severe cracking, onset of strength loss, and significant strength loss. Damage states are defined in a consistent manner. Cumulative distribution functions are fit to the empirical data and evaluated using standard statistical methods.

Optimum design of retaining structures under seismic loading using adaptive sperm swarm optimization

  • Khajehzadeh, Mohammad;Kalhor, Amir;Tehrani, Mehran Soltani;Jebeli, Mohammadreza
    • Structural Engineering and Mechanics
    • /
    • v.81 no.1
    • /
    • pp.93-102
    • /
    • 2022
  • The optimum design of reinforced concrete cantilever retaining walls subjected to seismic loads is an extremely important challenge in structural and geotechnical engineering, especially in seismic zones. This study proposes an adaptive sperm swarm optimization algorithm (ASSO) for economic design of retaining structure under static and seismic loading. The proposed ASSO algorithm utilizes a time-varying velocity damping factor to provide a fine balance between the explorative and exploitative behavior of the original method. In addition, the new method considers a reasonable velocity limitation to avoid the divergence of the sperm movement. The proposed algorithm is benchmarked with a set of test functions and the results are compared with the standard sperm swarm optimization (SSO) and some other robust metaheuristic from the literature. For seismic optimization of retaining structures, Mononobe-Okabe method is employed for dynamic loading conditions and total construction cost of the structure is considered as the single objective function. The optimization constraints include both geotechnical and structural restrictions and the design variables are the geometrical dimensions of the wall and the amount of steel reinforcement. Finally, optimization of two benchmark retaining structures under static and seismic loads using the ASSO algorithm is presented. According to the numerical results, the ASSO may provide better optimal solutions, and the designs obtained by ASSO have a lower cost by up to 20% compared with some other methods from the literature.

Rectangular Waveguide-NRD Waveguide Transition having the NRD Waveguide Built-in Structure (NRD 도파관에 내장된 구조를 갖는 구형 도파관-NRD 도파관 트랜지션)

  • Yoo, Young-Geun;Choi, Jae-Ha
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.4
    • /
    • pp.391-396
    • /
    • 2008
  • In this paper, we proposed the new rectangular waveguide-NRD waveguide transition in which the transition function about the standard waveguide is built in within the NRD waveguide ifself. The newly proposed rectangular waveguide-NRD waveguide transition was realized use of NRD waveguide input/output side wall thickness and hole width. In the case of the wall thickness, it was nearly identical with the half of the NRD waveguide guide wavelength and the width of an hole was nearly coincide with the length of the long side of the standard waveguide connected with the NRD waveguide. This kind of the principles is applicable to be unrelated with the frequency band. In this paper, it made in 38 GHz band with the rectangular waveguide-NRD waveguide transition and the feasibility was confirmed. In the back-to-back structure, the rectangular waveguide-NRD waveguide transition manufactured in 38 GHz band has the insertion loss less than 0.4 dB and also has the return loss less than 20 dB.