• 제목/요약/키워드: Standard Gear

검색결과 103건 처리시간 0.028초

표준기어를 이용한 기어 프로파일 정밀측정 알고리즘에 관한 연구 (A Study on Algorithm for Gear Profile Measurement Using a Standard Gear)

  • 이민기;이응석;김광중;박현용
    • 대한기계학회논문집A
    • /
    • 제36권5호
    • /
    • pp.555-561
    • /
    • 2012
  • 자동차 변속기 내부에서 동력을 전달하는 헬리컬 기어의 소음 및 진동을 억제하기 위한 하나의 방법으로 정밀하게 가공된 기어를 검사하기 위한 방법에 관한 것이다. 본 연구에서는 측정 기준이 되는 표준 기어와 측정 대상 기어인 워크 기어를 정밀하게 측정하는 알고리즘에 관한 것이다. 기존의 방법은 표준 기어와 모니터 기어를 1회전하여 주파수 방법으로 측정 표준을 위한 마스터링 작업을 수행하였다. 본 연구에서는 제시된 알고리즘을 사용하여 표준 기어와 모니터 기어를 측정하고, 표준 기어와 모니터 기어의 오차를 계산하는 방법을 제시함으로써 기어 측정에 대한 정밀도를 높이도록 하였다. 또한 본 알고리즘을 사용하면 빠른 속도로 측정의 표준이 되는 마스터링 공정을 빠르고 정확하게 측정할 수 있을 것으로 예상된다.

플라스틱 기어용 비표준 기어 설계프로그램의 개발 (Study on the Design Program for Non-standard Plastic Gear)

  • 허문범;함성훈;남원기;오세훈
    • 동력기계공학회지
    • /
    • 제15권4호
    • /
    • pp.54-59
    • /
    • 2011
  • Currently, plastic gear is widely used as parts of office equipment and industrial machines, because plastic substance has an advantage of light weight and possible to operate in oil-fewer conditions. However, under cyclic loadings, their occurred repetitive deformation due to weak tensile strength and bending stress rather than metal gear. Furthermore, they have a problem of attrition and breakage owing to frictional heat. For solving these problems, when plastic gear's opponents are metal gear, we should design that plastic gear's tooth be thick and metal gear's tooth be thin. In this research, we developed the program which developing tooth profile of non-standard gears automatically and calculating over-pin diameter for inspection after making gear.

사이클로이드 곡선 및 3차 다항식 곡선기어의 치형 설계에 관한 연구 (A Study on The Tooth Creating Algorithms of The Cycloid Curve Gear and The Third Polynomial Curve Gear)

  • 최종근;윤경태
    • 한국공작기계학회논문집
    • /
    • 제11권3호
    • /
    • pp.80-85
    • /
    • 2002
  • The free curve gear is a non-circular gear without any relating center, which can perform free curve motion for complicated mechanisms, and minimize the work area. In this study, an algorithms for tooth profile generation of free curve involute gear is developed. The algorithm uses the involute gear creating principle in which a gear can be generated by rolling with another standard involute one. Cycloid me and third polynomial curve gears were designed and verified by computer graphics. These gears are manufactured in the wire-cut EDM and examined in engagement with a standard spur gear. The results showed that the proposed algorithm is successful to design and to manufacture the free curve gear with concave and convex profiles.

치차 장치를 위한 공차 설계 시스템 개발 (Development of the Tolerance Design System for a Gear Drive)

  • 정태형;정진욱
    • 대한기계학회논문집A
    • /
    • 제24권11호
    • /
    • pp.2713-2722
    • /
    • 2000
  • When designing a gear drive, designers should specify tolerances reasonably considering accuracy, cost, and manufacturing capability. In field design, however, designers mostly assign adequate tolerance without correlations between parts and assembly, resulting in iterative design dependent on experts know-how. In order to resolve this, the tolerance design system for a cylindrical gear drive is developed both to support tolerance design automation and to synthesize design processes of part and assembly tolerances. In this research, part tolerances are designed with the databases constructed by ISO, Ks, JIS and bearing catalogue, Assemble tolerance, that is, backlash tolerance is designed by synthesizing part design tolerances stochastically using the formulated assembly relations. This system can include part tolerance and fitting accuracy of shaft adn bearing in practical design. In addition, this system provides field-designers with a synthetic guideline for tolerance design of a gear drive.

터보블로워용 헬리컬 기어의 접촉응력 해석 (Contact Stress Analysis of Helical Gear for Turbo Blower)

  • 황석철;이동형;박영철;이권희
    • 한국기계가공학회지
    • /
    • 제10권2호
    • /
    • pp.90-95
    • /
    • 2011
  • This paper presents the study on the contact stress analysis of a pair of mating helical gears for turbo blower during rotation. Turbo blowers need high speed rotation of impeller in structure and high rate gear ratio. The use of helical gear indicated that noise was an important problem when the application involves high speeds and large power transmission. An example is presented to investigate the variation of contact stress on a pair of mating gears with contact positions. The variation of contact stress during rotation is compared with the contact stress at the lowest point of single tooth contact(LPSTC) and AGMA Equation for contact stress. In this study, the gear design considering the contact stress on a pair of mating gear is more severe than that of AGMA standard.

Determination of safety factor for agricultural gear reducer using simulation software

  • Hong, Soon-Jung;Kim, Yong-Joo;Chung, Sun-Ok;Choi, Chang-Hyun;Park, Soo-Bok;Noh, Hyun-Seok;Jang, Jeong-Hoon
    • 농업과학연구
    • /
    • 제45권2호
    • /
    • pp.283-289
    • /
    • 2018
  • Agricultural gear reducers are used in a variety of agricultural machinery designs such as in agricultural tractors and transport cars, and even greenhouses. For greenhouses, a gear reducer is used to control windows on the side and the roof. Gear reducers for agricultural applications are designed using the empirical method because of the lack of a standard for experimentation. Simulation is necessary for the optimal design of an agricultural gear reducer. There are many advantages to this optimization such as low-cost maintenance, reduced size, and weight. In this study, bending and contact safety factor simulation for the gear reducer of a greenhouse was conducted by decreasing the face widths of helical gear shaft 2 and shaft 3 from 30.8 and 30 mm, respectively, at an interval of 4 mm. The bending and contact safety factors were calculated using AGMA standard. Simulation results showed that bending and contact safety factors decreased rapidly when the face width of the helical gear on shaft 2 was 30 mm and the face width of helical gear on shaft 3 decreased from 30.8 mm to 26.8 mm, suggesting that it would be safe to reduce the face width of the helical gear on shaft 3 to 26.8 mm. The reduction of the face width also reduced the weight of the agricultural gear. This study suggests that the agricultural gear reducer safety factor decreases as the face width decreases.

동력전달용 베벨기어의 강도평가 시스템 개발 연구 (Development of Rating Systems for Power Transmission Bevel Gears)

  • 정태형;지중조;변준형
    • 한국정밀공학회지
    • /
    • 제12권7호
    • /
    • pp.66-73
    • /
    • 1995
  • Rating systems of bevel gears(straight, spiral, and zerol bevel gears) which are commonly used as power transmission devices for non-papallel axes are developed on the personal computer, which analyze and/or evaluate the gear design and the service performance at the point of view of strength and durability. The typical considerations of the ratings are the bending strength, the surface durability, and the scoring resistance. The ratings are carried out using the reliable standards of AGMA & Gleason Works. Therefore, the system is built so that the variables or factors considered differently in those standards and the strength, dura- bility, and scoring partially in Gleason are appraised seperately by each method, and a series of the estimation processes is integrated into the system so as to compare each result. The developed rating systems can be used in the initial stage of gear design process, and also a better design can be performed by the evaluation of the initial design at the view point of gear strength and durability. Additionally, it is useful for the trouble-shooting of bevel gear system and to the purpose of introducing the methods for maintaining design strength in service, with appraising the gear strength after design or with appraising the influencing factor as a whole. Therefore, this rating systems can help the aim of design automation of bevel gears.

  • PDF

합금강을 이용한 스퍼기어의 정밀 냉간 단조 (Precision Cold Forging of Spur Gear Using the Alloy Steel)

  • 최재찬;최영
    • 소성∙가공
    • /
    • 제6권6호
    • /
    • pp.500-507
    • /
    • 1997
  • The conventional closed-die forgings had been applied to the forging of spur gears. But the forgings require high forging-pressure. In this paper, new precision forging technology have been developed. The developed technology is two steps forging process. Good shaped products are forged successfully with lower forging-pressure than those of conventional forging. The accuracy of the forged spur gear obtained by new precision forging technology is set nearly equal to that of cut spur gear of fourth and fifth class in Korean industrial standard.

  • PDF

Auto_LISP을 이용한 기어설계 프로그램 개발에 관한 연구 (A Study on the Development of the Gear Design Program Using Auto_LISP)

  • 이경원;반재삼;김종석;조규종
    • 한국공작기계학회논문집
    • /
    • 제11권2호
    • /
    • pp.36-42
    • /
    • 2002
  • After investigating repeatedly results obtained through gear stress analysis, we make a determination of an optimal gear shape. But its design process was not only complex but also difficult to get a precise profile curve from operating by hand. In this study, relating shape of gear profile curves was generated automatically with standard spur gear, equivalent helical gear, shifted gear & pinion by using developed program which is using Auto_LISP language in Auto-CAD. This program which can design rapidly gear shapes will successfully support gear designing and manufacturing fur Small & Medium companies.

수학적 알고리즘에 기초한 스퍼기어 및 헬리컬 기어 모델링에 관한 연구 (A Study on the Modeling of Spur and Helical Gear based on Mathematical Algorithm)

  • 김태호;이승수;김민주;전언찬
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.28-31
    • /
    • 2002
  • In this study, we develop automatic design program, which create 3D model of spur gear and helical gear used VisuaILISP and create helical gear in the CATIA using 2D profile of gear. This model become the standard model, which give not only in itself mold information but also computer processed product with measuring date. Spur gear require mathematical examination of involute curve and trocoidal fillet curve. Automatic design program, which have a mathematical development create the profile of spur gear.

  • PDF