The Journal of the Institute of Internet, Broadcasting and Communication
/
v.19
no.6
/
pp.139-144
/
2019
For recent decades, Non-volatile Memory (NVM) technologies have been drawing a high attention both in industry and academia due to its high density and short latency comparable to that of DRAM. However, NVM devices has write endurance problem and thus the current data structures that have been built around DRAM-specific features including unlimited program cycles is inadequate for NVM, reducing the device lifetime significantly. In this paper, we revisit a red-black tree extensively adopted for data indexing across a wide range of applications, and make it to better fit for NVM. Specifically, we observe that the conventional red-black tree wears out the specific location of memory because of its rebalancing operation to ensure fast access time over a whole dataset. However, this rebalancing operation frequently updates the long-lived nodes, which leads to the skewed wear out across the NVM cells. To resolve this problem, we present a new swapping wear-leveling red-black tree that periodically moves data in the worn-out node into the young node. The performance study with real-world traces demonstrates the proposed red-black tree reduces the standard deviation of the write count across nodes by up to 12.5%.
The aim of this study is to build Machine Learning models to evaluate the effect of blast furnace slag (BFS) and waste tire rubber powder (WTRP) on the compressive strength of cement mortars. In order to develop these models, 12 different mixes with 288 specimens of the 2, 7, 28, and 90 days compressive strength experimental results of cement mortars containing BFS, WTRP and BFS+WTRP were used in training and testing by Random Forest, Ada Boost, SVM and Bayes classifier machine learning models, which implement standard cement tests. The machine learning models were trained with 288 data that acquired from experimental results. The models had four input parameters that cover the amount of Portland cement, BFS, WTRP and sample ages. Furthermore, it had one output parameter which is compressive strength of cement mortars. Experimental observations from compressive strength tests were compared with predictions of machine learning methods. In order to do predictive experimentation, we exploit R programming language and corresponding packages. During experimentation on the dataset, Random Forest, Ada Boost and SVM models have produced notable good outputs with higher coefficients of determination of R2, RMS and MAPE. Among the machine learning algorithms, Ada Boost presented the best R2, RMS and MAPE values, which are 0.9831, 5.2425 and 0.1105, respectively. As a result, in the model, the testing results indicated that experimental data can be estimated to a notable close extent by the model.
Ensemble classification involves combining multiple classifiers to obtain more accurate predictions than those obtained using individual models. Ensemble learning techniques are known to be very useful for improving prediction accuracy. Bagging is one of the most popular ensemble learning techniques. Bagging has been known to be successful in increasing the accuracy of prediction of the individual classifiers. Bagging draws bootstrap samples from the training sample, applies the classifier to each bootstrap sample, and then combines the predictions of these classifiers to get the final classification result. Bootstrap samples are simple random samples selected from the original training data, so not all bootstrap samples are equally informative, due to the randomness. In this study, we proposed a new method for improving the performance of the standard bagging ensemble by optimizing bootstrap samples. A genetic algorithm is used to optimize bootstrap samples of the ensemble for improving prediction accuracy of the ensemble model. The proposed model is applied to a bankruptcy prediction problem using a real dataset from Korean companies. The experimental results showed the effectiveness of the proposed model.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.13
no.5
/
pp.183-188
/
2013
A variety of cluster analysis techniques prerequisite to cluster objects having similar characteristics in data mining. But the clustering of those algorithms have lots of difficulties in dealing with categorical data within the databases. The imprecise handling of uncertainty within categorical data in the clustering process stems from the only algebraic logic of rough set, resulting in the degradation of stability and effectiveness. This paper proposes a information-theoretic rough entropy(RE) by taking into account the dependency of attributes and proposes a technique called min-mean-mean roughness(MMMR) for selecting clustering attribute. We analyze and compare the performance of the proposed technique with K-means, fuzzy techniques and other standard deviation roughness methods based on ZOO dataset. The results verify the better performance of the proposed approach.
Purpose: This study was performed to evaluate the reliability of the identification of anatomical landmarks in panoramic and lateral cephalometric radiographs on a standard medical grade picture archiving communication system (PACS) monitor and a tablet computer (iPad 5). Materials and Methods: A total of 1000 radiographs, including 500 panoramic and 500 lateral cephalometric radiographs, were retrieved from the de-identified dataset of the archive of the Section of Oral and Maxillofacial Radiology of the University Of Connecticut School Of Dental Medicine. Major radiographic anatomical landmarks were independently reviewed by two examiners on both displays. The examiners initially reviewed ten panoramic and ten lateral cephalometric radiographs using each imaging system, in order to verify interoperator agreement in landmark identification. The images were scored on a four-point scale reflecting the diagnostic image quality and exposure level of the images. Results: Statistical analysis showed no significant difference between the two displays regarding the visibility and clarity of the landmarks in either the panoramic or cephalometric radiographs. Conclusion: Tablet computers can reliably show anatomical landmarks in panoramic and lateral cephalometric radiographs.
Journal of the Economic Geographical Society of Korea
/
v.10
no.2
/
pp.167-181
/
2007
The newly adopted Korea Geodetic Datum (a.k.a. KGD2002) calls for massive reengineering work on geospatial dataset. The main focus of our study is placed on the strategy and system implementations of the required data reengineering with a keen attention to integrated approaches to interoperability, standardization, and database utilization. Our reengineering strategy includes file-to-file, file-to-DB, DB-to-file, and DB-to-DB conversion for the coordinate transformation of KGD2002. In addition to the map formats of existing standards such as DXF and Shapefile, the newly recommended standards such as GML and SVG are also accommodated in our reengineering environment. These four types of standard format may be imported into and exported from spatial database via KGD2002 transformation component. The DB-to-DB conversion, in particular, includes not only intra-database conversion but also inter-database conversion between SDE/Oracle and Oracle Spatial. All these implementations were carried out in multiple computing environments: desktop and the Web. The feasibility test of our system shows that the coordinate differences between Bessel and GRS80 ellipsoid agree with the criteria presented in the existing researches.
Journal of Korean Society for Atmospheric Environment
/
v.24
no.1
/
pp.1-15
/
2008
Chemical Accident Response Information System (CARIS) which has been designed for the efficient emergency response of chemical accidents produces the real-time atmospheric fields through the Regional Atmospheric Modeling System, RAMS. The previous studies were emphasized that improving an initial input data had more effective results in developing prediction ability of atmospheric model. In a continuous effort to improve an initial input data, we replaced the land-use dataset using in the RAMS, which is a high resolution USGS digital data constructed in April, 1993, with the latest land-use data of the Korea Ministry of Environment over the South Korea and simulated atmospheric fields for developing a real-time prediction in dispersion of chemicals. The results showed that the new land-use data was written in a standard RAMS format and shown the modified surface characteristics and the landscape heterogeneity resulting from land-use change. In the results of sensitivity experiment we got the improved atmospheric fields and assured that it will give more reliable real-time atmospheric fields to all users of CARIS for the dispersion forecast in associated with hazardous chemical releases as well as general air pollutants.
The Transactions of The Korean Institute of Electrical Engineers
/
v.63
no.5
/
pp.676-682
/
2014
In this paper, precipitation echo(PRE) and non-precipitaion echo(N-PRE)(including ground echo and clear echo) through weather radar data are identified with the aid of neuro-fuzzy algorithm. The accuracy of the radar information is lowered because meteorological radar data is mixed with the PRE and N-PRE. So this problem is resolved by using RBFNN and judgement module. Structure expression of weather radar data are analyzed in order to classify PRE and N-PRE. Input variables such as Standard deviation of reflectivity(SDZ), Vertical gradient of reflectivity(VGZ), Spin change(SPN), Frequency(FR), cumulation reflectivity during 1 hour(1hDZ), and cumulation reflectivity during 2 hour(2hDZ) are made by using weather radar data and then each characteristic of input variable is analyzed. Input data is built up from the selected input variables among these input variables, which have a critical effect on the classification between PRE and N-PRE. Echo judgment module is developed to do echo classification between PRE and N-PRE by using testing dataset. Polynomial-based radial basis function neural networks(RBFNNs) are used as neuro-fuzzy algorithm, and the proposed neuro-fuzzy echo pattern classifier is designed by combining RBFNN with echo judgement module. Finally, the results of the proposed classifier are compared with both CZ and DZ, as well as QC data, and analyzed from the view point of output performance.
Journal of Korea Society of Industrial Information Systems
/
v.25
no.5
/
pp.1-11
/
2020
Image-based virtual try-on (VTON) is becoming popular for online apparel shopping, mainly because of not requiring 3D information for try-on clothes and target humans. However, existing 2D algorithms, even when utilizing advanced non-rigid deformation algorithms, cannot handle large spatial transformations for complex target human poses. In this study, we propose a 3D clothing reconstruction method using a 3D human body model. The resulting 3D models of try-on clothes can be more easily deformed when applied to rest posed standard human models. Then, the poses and shapes of 3D clothing models can be transferred to the target human models estimated from 2D images. Finally, the deformed clothing models can be rendered and blended with target human representations. Experimental results with the VITON dataset used in the previous works show that the shapes of reconstructed clothing are significantly more natural, compared to the 2D image-based deformation results when human poses and shapes are estimated accurately.
Background: Tobacco use is the single most important preventable risk factor for cancer. Surveillance of tobacco-related cancers (TRC) is critical for monitoring trends and evaluating tobacco control programmes. We analysed the trends of TRC and evaluated the population-based cancer registry (PBCR) in Delhi for simplicity, comparability, validity, timeliness and representativeness. Materials and Methods: We interviewed key informants, observed registry processes and analysed the PBCR dataset for the period 1988-2009 using the 2009 TRC definition of the International Agency for Research on Cancer. We calculated the percentages of morphologically verified cancers, death certificate-only (DCO) cases, missing values of key variables and the time between cancer diagnosis and registration or publication for the year 2009. Results: The number of new cancer cases increased from 5,854 to 15,244 (160%) during 1988-2009. TRC constituted 58% of all cancers among men and 47% among women in 2009. The age-adjusted incidence rates of TRC per 100,000 population increased from 64.2 to 97.3 among men, and from 66.2 to 69.2 among women during 1988-2009. Data on all cancer cases presenting at all major government and private health facilities are actively collected by the PBCR staff using standard paper-based forms. Data abstraction and coding is conducted manually following ICD-10 classifications. Eighty per cent of cases were morphologically verified and 1% were identified by death certificate only. Less than 1% of key variables had missing values. The median time to registration and publishing was 13 and 32 months, respectively. Conclusions: The burden of TRC in Delhi is high and increasing. The Delhi PBCR is well organized and generates high-quality, representative data. However, data could be published earlier if paper-based data are replaced by electronic data abstraction.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.