• 제목/요약/키워드: Standard $k-{\varepsilon}$ turbulence model

검색결과 167건 처리시간 0.023초

삽입관이 있는 확장형 소음기에서의 기류음 감소 (Reduction of Flow-Induced Noise in an Expansion Muffler with Lids)

  • 강웅;김형진;성형진
    • 대한기계학회논문집B
    • /
    • 제33권2호
    • /
    • pp.79-84
    • /
    • 2009
  • Turbocharger has been widely used in many passenger cars in application with diesel engines because of high power and fuel efficiency. However, flow-induced noise (whoosh or hissing noise) which is generated within a compressor during its operation at marginal surge line can deteriorate noise characteristics. Hissing noise excitation is associated with the generation of turbulence within the turbocharger compressor and radiated through the transmission path in a turbocharger system. In this study, a expansion muffler with lids is devised and installed in the transmission path to reduce the hissing noise. Acoustic and fluid dynamic characteristics for the muffler are investigated which are related to the unsteadiness of turbulence and pressure in the turbocharger system. A transfer matrix method is used to analyze the transmission loss of the muffler. A simple expansion muffler with lids is proposed for the reduction of high frequency component noise. Turbulence simulation is carried out by a standard k - ${\varepsilon}$ model. An optimal design condition of the muffler is obtained by extensive acoustic and fluid dynamic analysis on the engine dynamometer with anechoic chamber. A significant reduction of the hissing noise is achieved at the optimal design of the muffler as compared with the conventional muffler.

Numerical simulation for unsteady flow over marine current turbine rotors

  • Hassanzadeh, A. Reza;Yaakob, Omar bin;Ahmed, Yasser M.;Ismail, M. Arif
    • Wind and Structures
    • /
    • 제23권4호
    • /
    • pp.301-311
    • /
    • 2016
  • The numerous benefits of Savonius turbine such as simple in structure, has appropriate self-start ability, relatively low operating velocity, water acceptance from any direction and low environmental impact have generated interests among researchers. However, it suffers from a lower efficiency compared to other types of water turbine. To improve its performance, parameters such flow pattern, pressure and velocity in different conditions must be analyzed. For this purpose, a detailed description on the flow field of various types of Savonius rotors is required. This article presents a numerical study on a nonlinear two-dimensional flow over a classic Savonius type rotor and a Benesh type rotor. In this experiment, sliding mesh was used for solving the motion of the bucket. The unsteady Reynolds averaged Navier-Stokes equations were solved for velocity and pressure coupling by using the SIMPLE (Semi-Implicit Method for Pressure linked Equations) algorithm. Other than that, the turbulence model using $k-{\varepsilon}$ standard obtained good results. This simulation demonstrated the method of the flow field characteristics, the behavior of velocity vectors and pressure distribution contours in and around the areas of the bucket.

사각형 광정위어를 통과하는 자유수면 흐름 수치모의 (Numerical Modeling of Free Surface Flow over a Broad-Crested Rectangular Weir)

  • 백중철;이남주
    • 한국수자원학회논문집
    • /
    • 제48권4호
    • /
    • pp.281-290
    • /
    • 2015
  • 표준 k-${\varepsilon}$, RNG k-${\omega}$ 그리고 k-${\omega}$ SST 난류 모형과 VOF (volume of fluid)기법을 이용하여 사각형 광정위어를 통과하는 난류 흐름의 수면 변화와 유속분포를 수치모의 하였다. 지배방정식은 2차 정확도의 유한체적기법을 이용하여 해석하였으며, 두 개의 서로 다른 격자해상도에서 계산을 수행하여 수치해석 결과의 격자 민감도를 분석하였다. 계산 결과를 Kirkgoz et al. (2008)의 실험 결과 그리고 Moss (1972) 및 Zachoval et al. (2012) 무차원화된 실험값과 비교 분석하여 적용한 수치모형의 정확도를 평가하였다. 수치모의 결과는 사각형 개수로에 설치된 광정위어 흐름의 실험결과들을 합리적으로 예측하고 있으면 적용한 난류모형에 따라서 두 개의 주요 흐름분리 영역에서 계산 결과에 차이가 있는 것으로 나타났다. 표준 k-${\varepsilon}$ 모형은 이들 두 개의 흐름분리영역의 크기를 과소산정하고 있으며, k-${\omega}$ SST 모형은 위어 전면부에서 발생하는 흐름분리 영역을 다소 과대 산정하는 것으로 나타났다. RNG k-${\varepsilon}$ 모형은 전반적으로 양호하게 두 흐름분리 영역을 예측하는 한편, k-${\omega}$ SST 모형은 위어 상류부 모서리에서 발생하는 박리거품의 발생 형태를 가장 잘 예측하는 것으로 나타났다.

Analysis of Viscous Free Surface Flow around a Ship by a Level-set Method

  • Park, Il-Ryong;Chun, Ho-Hwan
    • Journal of Ship and Ocean Technology
    • /
    • 제6권2호
    • /
    • pp.37-50
    • /
    • 2002
  • In the present numerical simulation of viscous free surface flow around a ship, two-fluids in-compressible Reynolds-averaged Navier-Stokes equations with the standard $\textsc{k}-\varepsilon$turbulence model are discretized on a regular grid by using a finite volume method. A local level-set method is introduced for capturing the free surface movement and the influence of the viscous layer and dynamic boundary condition of the free surface are implicitly considered. Partial differential equations in the level-set method are discretized with second order ENO scheme and explicit Euler scheme in the space and time integration, respectively. The computational results for the Series-60 model with $C_B=0.6$ show a good agreement with the experimental data, but more validation studies for commercial complicated hull forms are necessary.

Centrifugal Impeller Blade Shape Optimization Through Numerical Modeling

  • Bellary, Sayed Ahmed Imran;Samad, Abdus
    • International Journal of Fluid Machinery and Systems
    • /
    • 제9권4호
    • /
    • pp.313-324
    • /
    • 2016
  • Surrogate model based shape optimization methodology to enhance performance of a centrifugal pump has been implemented in this work. Design variables, such as blade number and blade angles defining the pump impeller blade shape were selected and a three-level full factorial design approach was used for efficiency enhancement. A three-dimensional simulation using Reynolds-averaged Navier Stokes (RANS) equations for the performance analysis was carried out after designing the geometries of the impellers at the design points. Standard $k-{\varepsilon}$ turbulence model was used for steady incompressible flow simulations. The optimized impeller incurred lower losses by shifting the trailing edge towards the impeller pressure side. It is observed that the surrogates are problem dependent and most accurate surrogate does not deliver the best design always.

연속주조공정에서의 유동과 응고에 대한 유한요소 모델링 (A Finite Element Modeling on the Fluid Flow and Solidification in a Continuous Casting Process)

  • 김태헌;김덕수;최형철;김우승;이세균
    • 대한기계학회논문집B
    • /
    • 제23권7호
    • /
    • pp.820-830
    • /
    • 1999
  • The coupled turbulent flow and solidification is considered in a typical slab continuous easting process using commercial program FIDAP. Standard $k-{\varepsilon}$ turbulence model is modified to decay turbulent viscosity in the mushy zone and laminar viscosity is set to a sufficiently large value at the solid region. This coupled turbulent flow and solidification model also contains thermal contact resistance due to the mold powder and air gap between the strand and mold using an effective thermal conductivity. From the computed flow pattern, the trajectory of inclusion particles was calculated. The comparison between the predicted and experimental solidified shell thickness shows a good agreement.

Numerical Simulation of Air Flow and Gas Dispersion around Obstacles

  • Nguyen The-Due;Park Warn-Gyu;Duong Ngoe-Hai
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2003년도 The Fifth Asian Computational Fluid Dynamics Conference
    • /
    • pp.253-254
    • /
    • 2003
  • Computations of the mean and turbulence flows over three-dimensional hill of conical shape have implemented. Beside the standard ${\kappa}-{\varepsilon}$ , two other modifications proposed by Detering & Etling and Duynkerke for atmospheric applications were also considered. These predictions were compared with the data of a wind tunnel experiment. From the comparison, it was concluded that all three models predict the mean flow velocities equally well while only the Duynkerke's model accurately predicts the turbulence data statistics. It also concluded that there are large discrepancies between model predictions and the measurements near the ground surface. The flow field, which was obtained by using the Duynkerke's modification, was used to simulate gas dispersion from an upwind source. The calculation results are verified based on the measurement data. Modifications of the turbulent Schmidt number were carried out in order to match the measured results. The code was used to investigate the influence of the recirculation zone behind a building of cubical shape on the transport and dispersion of pollutant. For a stack behind and near the obstacle, some conclusions about the effect of the stack height and stack location were derived.

  • PDF

Numerical Design and Performance Prediction of Low Specific Speed Centrifugal Pump Impeller

  • Yongxue, Zhang;Xin, Zhou;Zhongli, Ji;Cuiwei, Jiang
    • International Journal of Fluid Machinery and Systems
    • /
    • 제4권1호
    • /
    • pp.133-139
    • /
    • 2011
  • In this paper, Based on Two-dimensional Flow Theory, adopting quasi-orthogonal method and point-by-point integration method to design the impeller of the low specific speed centrifugal pump by code, and using RANS (Reynolds Averaged N-S) Equation with a standard k-${\varepsilon}$ two-equation turbulence model and log-law wall function to solve 3D turbulent flow field in the impeller of the low specific speed pump. An analysis of the influences of the blade profile on velocity distributions, pressure distributions and pump performance and the investigation of the flow regulation pattern in the impeller of the centrifugal pump are presented. And the result shows that this method can be used as a new way in low speed centrifugal pump impeller design.

Effectiveness of Ventilation Control in a Dry Room with a Heat and Moisture Source

  • Lee, Kwan-Soo;Lim, Kwang-Ok;Ahn, Kang-Ho;Jung, Young-Sick
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제9권4호
    • /
    • pp.1-9
    • /
    • 2001
  • The temperature and moisture distributions in a dry room with a heat and moisture source -i.e., workers- are studied numerically by using a standard $k-\varepsilon$ turbulence model. In order to evaluate the effectiveness of heat and moisture ventilation inside the room, the heat removal capacity and the moisture exhaust efficiency are introduced. The effectiveness of ventilation control is analyzed by evaluating the temperature and humidity distributions in the room quantitatively. It is found that the mean absolute humidity inside the room is almost constant regardless of the models and the heat generation rates in this study range. This results from the fact that the moisture generation by the workers was relatively small. Through the modification of the design, 40% improvement in critical decay time was achieved.

  • PDF

Conceptual design and numerical simulations of a vertical axis water turbine used for underwater mooring platforms

  • Wenlong, Tian;Baowei, Song;Zhaoyong, Mao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권4호
    • /
    • pp.625-634
    • /
    • 2013
  • Energy is a direct restriction to the working life of an underwater mooring platform (UMP). In this paper, a vertical axis water turbine (VAWT) is designed to supply energy for UMPs. The VAWT has several controlled blades, which can be opened or closed by inside plunger pumps. Two-dimensional transient numerical studies are presented to determine the operating performance and power output of the turbine under low ocean current velocity. A standard k-${\varepsilon}$ turbulence model is used to perform the transient simulations. The influence of structural parameters, including foil section profile, foil chord length and rotor diameter, on the turbine performance are investigated over a range of tip-speed-ratios (TSRs). It was found that turbine with three unit length NACA0015 foils generated a maximum averaged coefficient of power, 0.1, at TSR = 2.