• Title/Summary/Keyword: Standard $\kappa-\varepsilon$ model

Search Result 67, Processing Time 0.026 seconds

Effect of the Gurney Flap on a NACA 23012 Airfoil

  • Yoo, Neung-Soo
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.9
    • /
    • pp.1013-1019
    • /
    • 2000
  • A numerical investigation was performed to determine the effect of the Gurney flap on a NACA 23012 airfoil. A Navier-Stokes code, RAMPANT, was used to calculate the flow field about the airfoil. Fully-turbulent results were obtained using the standard ${\kappa}-{\varepsilon}$ two-equation turbulence model. The numerical solutions showed that the Gurney flap increased both lift and drag. These results suggested that the Gurney flap served to increase the effective camber of the airfoil. The Gurney flap provided a significant increase in the lift-to-drag ratio relatively at low angle of attack and for high lift coefficient. It turned out that 0.6% chord size of flap was the best. The numerical results exhibited detailed flow structures at the trailing edge and provided a possible explanation for the increased aerodynamic performance.

  • PDF

Flow Characteristics of Pressure Balancing Valve with Various Piston Shapes (피스톤 형상변화에 따른 압력평형밸브의 유동특성연구)

  • Kim, Tae-An;An, Byeong-Jae;Kim, Yun-Je
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.2168-2173
    • /
    • 2003
  • Pressure balancing valve is one of important control devices, which is fully automatic and no manual controls, regulating or adjustments are needed. It is typically used to maintain constant temperature of working fluid in power and chemical plants and domestic water supply systems. Pressure balancing valve is composed of body, cylinder and balancing piston. Therefore, the balancing piston shapes are important design parameters for a pressure balancing valve. In this study, numerical and experimental analyses are carried out with two different balancing piston shapes. Especially, the distribution of static pressure is investigated to calculate the flow coefficient($C_v$). The governing equations are derived from making using of three-dimensional Navier-Stokes equations with standard ${\kappa}-{\varepsilon}$ turbulence model and SIMPLE algorithm. Using commercial code, PHOEIC, the pressure and flow fields in pressure balancing valve are depicted.

  • PDF

Numerical analysis on the flow field and moisture contamination in a dry room (Dry Room내 기류 및 수분오염에 관한 수치적 연구)

  • Lee, Kwan-Soo;Lim, Kwang-Ok;Jung, Young-Sick
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.865-870
    • /
    • 2000
  • The flow and the moisture contamination of the dry room in the manufacturing process of lithium ion battery are analyzed numerically by finite volume method. Standard ${\kappa}-{\varepsilon}$ turbulent model widely applied in predicting turbulent flow is adopted in this study. Moisture contamination and distribution are studied by assumption of two cases; one-point generation and uniform generation throughout the room. To evaluate ventilation efficiency on moisture contamination, scales of ventilation efficiency are introduced. From these analyses, moisture contamination is strongly dependent on the flow field and the radius of moisture contamination can be reduced by closing a part of outlets in a dry room.

  • PDF

CFD Analysis of Turbulent Heat Transfer in a Heated Rod Bundle (가열 봉다발의 난류 열전달에 대한 전산유체역학 해석)

  • In, Wang-Kee;Oh, Dong-Seok;Chun, Tae-Hyun
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.598-603
    • /
    • 2003
  • A CFD analysis has been performed to investigate turbulent heat transfer in a triangular rod bundle with a pitch-to-diameter ratio(P/D) of 1.06. Anisotropic turbulence models predicted the turbulence-driven secondary flow in the triangular subchannel and the distributions of time mean velocity and temperature showing significantly improved agreement with the measurements over the linear standard ${\kappa}-{\varepsilon}$. The anisotropic turbulence models predicted turbulence structure in large flow region fairly well but could not predict the very high turbulent intensity of azimuthal velocity observed in narrow flow region(gap).

  • PDF

Analysis of Flow Characteristics in the Intake System of 6-Cylinder MPI CNG Engine

  • Ha, Seung-Hyun;Kim, Ho-Young;Chung, Jin-Taek
    • 한국연소학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.215-222
    • /
    • 2002
  • It has been well acknowledged that intake system plays great role in the performance of reciprocating engine. Well-designed intake system is expected to not only increase engine efficiency but also decrease engine emission, which is one of the most urgent issues in the automotive society. Thorough understanding of the flow in intake system helps great to design adequate intake system. Even though both experimental and numerical methods are used to study intake flow, numerical analysis is more widely used due to its merits in time and economy. Intake system of In-line 6-Cylinder CNG engine was chosen for the analysis ICEM CFD HEXA was used to create 3-D structured grid and FIRE code was used for the flow analysis in the intake system. Due to the complexity of the geometry standard ${\kappa}-{\varepsilon}$ turbulence model was applied. Numerical analysis was performed for various inlet and outlet boundary conditions under both steady and transient flow. Inlet mass flow rate and outlet pressure variation were changing parameters with respect to engine speed. Flow parameters, such as velocity, pressure and flow distribution, were evaluated to provide adequate data of this intake system.

  • PDF

Numerical Simulation on the Heat Transfer and Smoke Flow Phenomena and Evacuation in the Road funnel Fires (도로터널내부 화재시의 열전달 및 연기거동에 따른 피난안전성평가에 관한 수치적 연구)

  • Min Dong-Ho;Son Bong-Sei
    • Fire Science and Engineering
    • /
    • v.19 no.1 s.57
    • /
    • pp.87-92
    • /
    • 2005
  • In this paper, numerical simulation are conducted to predict the characteristics of the heat transfer and smoke flow and evacuation in the road tunnel. Fire source are used about 30 MW and the turbulent flow characteristics are considered by standard k-epsilon turbulent model. The effect of transient thermal behavior and disaster prevention can be used for designing the road tunnel.

Analysis of Temperature and Humidity Distribution in a Dry Room (Dry Room내의 온.습도 분포 해석)

  • 이관수;임광옥;안강호;정영식
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.6
    • /
    • pp.524-531
    • /
    • 2001
  • The temperature and humidity distribution in a dry room are studied numerically by using standard$\kappa-\varepsilon$ turbulence model. In order to evaluate effective heat and moisture ventilation characteristics inside the room, the heat removal capacity and moisture exhaust efficiency are introduced. An effective ventilation control is analyzed by evaluating quantitatively temperature and humidity distributions. It was found that the mean absolute humidity inside the room was almost constant with approximately 0.1905g/kg air regardless of the models and the heat generation rates. This was believed that the moisture generation by workers was relatively small. 40% improvement of the critical decay time was achieved, through the modifications of design variables.

  • PDF

Effect of the Gurney Flap on NACA 0015 Airfoil (NACA 0015 익형에 대한 Gurney 플랩의 영향)

  • Yoo, Neung-Soo;Lee, Jang-Ho
    • Journal of Industrial Technology
    • /
    • v.20 no.B
    • /
    • pp.71-76
    • /
    • 2000
  • A numerical investigation was performed to determine the effect of the Gurney flap on NACA 0015 airfoil. A Navier-Stokes code. FLUENT, was used to calculate the flow field about the airfoil. The fully-turbulent results were obtained using the standard ${\kappa}-{\varepsilon}$ two-equation turbulence model. The numerical solutions showed the Gurney flap increased both lift and drag. These results suggested that the Gurney flap served to increase the effective camber of the airfoil. Gurney flap provided a significant increase in lift-to-drag ratio relatively at low angle of attack and for high lift coefficient. It turned out that 0.75% chord size of flap was best. The numerical results exhibited detailed flow structures at the trailing edge and provided a possible explanation for the increased aerodynamic performance.

  • PDF

Effects of Starting Angles of a Rearguider on the Performance of a Cross-Flow Fan (리어가이더 시작각 변화가 횡류홴 성능에 미치는 영향)

  • Kim, Hyung-Sub;Kim, Dong-Won;Yoon, Tae-Seok;Park, Sung-Kwan;Kim, Yun-Je
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1981-1986
    • /
    • 2004
  • A cross-flow fan relatively makes high dynamic pressure at low speed because a working fluid passes through an impeller blade twice and blades have a forward curved shape. Therefore, the performance of a cross-flow fan is influenced 25% by the impeller, 60% by the rearguider and the stabilizer, 15% by the heat exchanger. At the low flow rate, there exists a rapid pressure head reduction, a noise increase and an unsteady flow against a stabilizer and a rearguider. Moreover, it is difficult to analyze the reciprocal relations of the cross-flow fan because each parameter is independent. Numerical analyses are conducted with different starting angles of the rearguider. Two-dimensional, unsteady governing equations are solved, using FVM, PISO algorithm, sliding grid system and ${\kappa}-{\varepsilon}$ standard turbulence model.

  • PDF

A Study on the Performance Characteristic of a Fire Pump with Various Operating Conditions (운전조건 변화에 따른 소방펌프 성능특성 연구)

  • Park, Sung-Kyu;Noh, Go-Sub;Kim, Yun-Je
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2011-2016
    • /
    • 2004
  • In order to develop a high efficiency fire pump, its performance characteristics with various operating conditions are investigated. The governing equations are derived from making using of three-dimensional Navier-Stokes equations with the standard ${\kappa}-{\varepsilon}$ turbulence model and SIMPLE algorithm. Using a commercial code, CFX, pressure distribution and flow fields in a fire pump are calculated with various ranges of rotating speed 800-2400 rpm. Particularly, calculations with multiple frames of reference method between the rotating and stationary parts of the domain are carried out. With the help of numerical results, correlation formula between the casing pressure and the efficiency is derived.

  • PDF