• Title/Summary/Keyword: Stand-alone wind system

Search Result 77, Processing Time 0.026 seconds

Optimized Design and Coordinated Control for Stand-alone DC Micro-grid (독립형 DC 마이크로그리드의 최적화 설계와 협조적 제어)

  • Han, Tae-Hee;Lee, Ji-Heon;Kim, Hyun-Jun;Han, Byung-Moon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.63-71
    • /
    • 2013
  • This paper describes the coordinated droop control method for stand-alone type DC micro-grid to improve reliability and utilization of distributed generations and energy storage. The stand-alone type DC micro-grid consists of several distributed generations such as a wind power generation, solar power and micro-turbine, and energy storage. The proposed method which is based on autonomous control method shows high reliability and stability through coordinated droop control of distributed generations and energy storage and also capability of battery management. The operation of stand-alone type DC micro-grid was analyzed using detail simulation model with PSCAD/EMTDC software. Based on simulation results, a hardware simulator was built and tested with commercially available components and performance of system was verified.

Power and Economic Simulation of Island for the Field Demonstration Test of Smart Microgrid System Based on Stand-alone Wind power (독립형 풍력기반 Smart Microgrid 시스템의 현장 실증 시험을 위한 도서지역 전력 및 경제성 시뮬레이션)

  • Kang, SangKyun;Lee, EunKyu;Lee, JangHo
    • New & Renewable Energy
    • /
    • v.10 no.3
    • /
    • pp.22-30
    • /
    • 2014
  • The isolated self-generating electricity with diesel engine generator has been used in islands far away from main land. It costs high because of increasing oil price, and unsafe to have supplying oil and its related components by ship due to unexpectable marine conditions. Therefore there is the need for the hybrid system of renewable energy like wind or solar energy systems with oil engine generator, which can reduce oil use and extend oil supplying period. In this study, the feasibility of such hybrid system with smart micro grid on the eight islands of Jeon-nam province is surveyed to find good place for the demonstration test of the hybrid system. In each island, 3 wind turbine systems of 10 kW and photovoltaic of 20 kW are tested with already installed diesel engine. The performance and costs of the hybrid system in each island are compared in the given conditions of solar and wind energy potential. As a result of the study, Jung-ma island is recommended for the optimum place to make real field demonstration test of isolated hybrid generating and smart grid systems.

Voltage and Frequency Control Method Using Battery Energy Storage System for a Stand-alone Microgrid (배터리 에너지 저장장치를 이용한 독립형 마이크로그리드의 전압 및 주파수 제어)

  • Kim, Sang-Hyuk;Chung, Il-Yop;Lee, Hak-Joo;Chae, Woo-Kyu
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.8
    • /
    • pp.1168-1179
    • /
    • 2015
  • This paper presents voltage and frequency control methods for a stand-alone Gasa Island Microgrid in South Korea that can be fully energized by renewable energy resources such as photovoltaic systems and wind turbines. To mitigate the variations of the output of renewable energy resources and supply more reliable electricity to customers, battery energy storage systems (BESSs) are employed in the stand-alone microgrid. The coordination between BESSs and pre-existing diesel generators is an important issue to manage the microgrid more securely. This paper presents voltage and frequency control schemes considering the coordination of BESSs and DGs. The effectiveness for the operating method is validated via simulation studies.

Adjustable Speed Control of Stand-Alone Wind Power Generation System using Squirrel-Cage Induction Generators (농형유도발전기를 이용한 독립형 풍력발전시스템의 가변속 제어)

  • Kim, Hyeung-Kyun;Lee, Kang-Ju;Lee, Dong-Choon;Seok, Jul-Ki
    • Proceedings of the KIEE Conference
    • /
    • 2003.04a
    • /
    • pp.338-340
    • /
    • 2003
  • This paper proposes a stand-alone adjustable speed wind Power generation system using a cage-type induction generator. Indirect vector control is used, where the q-axis current controls the generator speed and the d-axis current controls the excitation level. The generator speed is adjusted according to the wind speed so as to produce the maximum output power. The generated power is charged in the battery bank through ac/dc PWM converter. The proposed scheme has been verified by the experimental results.

  • PDF

A Study of Stand Alone Small Wind Turbine Systems (독립형 소형 풍력발전 시스템에 관한 연구)

  • Kim, Hyoung-Gii;Kong, Jeong-Sik;Seo, Young-Taek;Oh, Chul-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1005-1007
    • /
    • 2005
  • Small wind turbines are becoming a viable technology option to supply electricity to landowners. These systems provide energy security, product relatively no environmental harm, and in an appropriate setting can be quite cost-competitive with traditional electricity options. This paper is dealing with the methods how to overcome such inconvenience and with the analysis of characteristic and a field test with a prototype of the stand alone wind turbine was performed. The method applies to small systems, equipped with a coreless axial-flux permanent magnet(AFPM) generator in the turbine, a dc-dc converter and batteries. The analysis concentrates on the effect of the load on the power-wind speed curve of the turbine. The system is designed for direct driven, coupled with turbine and generator with a rated power of, 3kW.

  • PDF

An Improved Control Strategy Using a PI-Resonant Controller for an Unbalanced Stand-Alone Doubly-Fed Induction Generator

  • Phan, Van-Tung;Lee, Hong-Hee;Chun, Tae-Won
    • Journal of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.194-202
    • /
    • 2010
  • The main cause of degradation in an unbalanced stand-alone doubly-fed induction generator (DFIG) system is negative sequence components that exist in the generated stator voltages. To eliminate these components, a hybrid current controller composed of a proportional-integral controller and a resonant regulator is developed in this paper. The proposed controller is applied to the rotor-side converter of a DFIG system for the purpose of compensating the negative stator voltage sequences. The proposed current controller is implemented in a single positive rotating reference frame and therefore the controller can directly regulate both the positive and negative sequence components without the need for sequential decomposition of the measured rotor currents. In terms of compensation capability and accuracy, simulations and experimental results demonstrated the excellent performance of the proposed control method when compared to conventional vector control schemes.

Design and Implementation of Stand-alone Microgrid Monitoring System for Green Energy Independence Island (그린에너지 자립섬을 위한 계통 독립형 마이크로그리드 모니터링 시스템 설계 및 구현)

  • Song, Hwa-Jung;Park, Kyoung-Wook;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.4
    • /
    • pp.527-532
    • /
    • 2015
  • In domestic island regions, the power supply generally depends on diesel generators due to difficulties of grid connection. To solve this issue, recently, the study on the stand-alone microgrid technology and its test are being actively conducted. In this paper, we propose the stand-alone microgrid integration monitoring system for energy independence island. First, we design the software architecture for monitoring of solar, wind, diesel power generation facilities, transmission and distribution of grid network, and energy storage system. Then, we implement the monitoring software that allows administrators to identify and run the monitoring software easily.

Three-Phase 4-Wire Isolated Wind Energy Conversion System Employing VSC with a T-Connected Transformer for Neutral Current Compensation

  • Kasal, Gaurav Kumar;Singh, Bhim
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.211-218
    • /
    • 2009
  • This paper presents a voltage and frequency controller (VFC) for a 4-wire stand-alone wind energy conversion system (WECS) employing an asynchronous generator. The proposed VF con-troller consists of a three leg IGBT (Insulated Gate Bipolar Junction Transistor) based voltage source converter and a battery at its DC bus. The neutral terminal for the consumer loads is created using a T-connected transformer, which consists of only two single phase transformers. The control algorithm of the VF controller is developed for the bidirectional flow capability of the active power and reactive power control by which it controls the WECS voltage and frequency under different dynamic conditions, such as varying consumer loads and varying wind speeds. The WECS is modeled and simulated in MATLAB using Simulink and PSB toolboxes. Extensive results are presented to demonstrate the capability of the VF controller as a harmonic eliminator, a load balancer, a neutral current compensator as well as a voltage and frequency controller.

Vibration Performance Monitoring of a 1kW Small Wind Turbine Generator (1kW 소형 풍력발전기의 진동 성능 모니터링)

  • Kim, Seok-Hyun;Nam, Yoon-Soo;Yoo, Neung-Soo;Park, Mu-Yeol;Kim, Tae-Hyoung;Park, Hae-Gyun
    • Journal of Industrial Technology
    • /
    • v.26 no.A
    • /
    • pp.75-80
    • /
    • 2006
  • A vibration monitoring is performed on a 1kW class stand alone wind turbine(W/T). When a W/T model is developed, general performance under various wind condition should be verified to introduce the product in the market. Especially, vibration characteristics within operating speed range are very important in the aspect of structural stability as well as generator's electrical efficiency. This paper examines the vibration performance of a home made 1kW W/T. Various data of the W/T model are acquired in real time using a remote vibration monitoring system installed in Daekwanryung test site. Vibration stability of the W/T structure is diagnosed based upon the data and the result is used to estimate the applicability of the W/T model.

  • PDF