• 제목/요약/키워드: Stamp forming process

검색결과 28건 처리시간 0.017초

유한요소법에 의한 마그네슘 합금판의 성형성 해석 (Analysis of Formability of Magnesium Alloy using Finite Element Method)

  • 강대민;박경동;황종관
    • 한국기계가공학회지
    • /
    • 제3권2호
    • /
    • pp.60-66
    • /
    • 2004
  • Finite element method is very effective method to simulate the forming processes with good prediction of the deformation behaviour. In this paper, It was focussed on the drawability factors on the square cup deep drawing by PAM-STAMP with using magnesium alloy to reduce car weight as well as to draw much attention from the viewpoint of environmental preservation high rigidity, In order to predict the effect of drawability factors, the relationships between punch load and punch stroke, the relationships between thickness strain and distance, and are used. According to this study, the results of simulation will give engineers good information to access the drawability of square cup deep drawing at warm temperature.

  • PDF

퍼멀로이 실딩캔의 강성증대 및 형상 정밀도를 위한 최적 헤밍 공정설계 (Hemming Process Design of the Permalloy Shielding Can for the Stiffness and Shape Accuracy)

  • 이선봉;김동환;김병민
    • 한국정밀공학회지
    • /
    • 제19권5호
    • /
    • pp.29-35
    • /
    • 2002
  • This study shows the process design and forming analysis of permalloy shielding can that support the automobile multi-display parts to indicate the accurate information of car. This study is particularly important, since the accuracy of permalloy shielding can is known to affect the magnetic properties such as coercivity and permeability quite sensitively. The objective functions are defects such as hemming wind, hemming length, hemming wrap and tightness in prehemming process. The pre-hemming angle is considered as design parameter. The commercial finite element program PAM-STAMP™ was used to simulate the pre-hemming and hemming process. The ANN (Artificial Neural Network) has been implemented for minimizing of objective function and for investigating effect of punch angle relevant to the pre-hemming process. The results of analysis to validate the proposed design method are presented.

초고강도 강판 성형 시의 스프링백 해석 및 금형 소재 적합성 검토 (Analysis of Springback and Die Material Suitability in the UHSS Sheet Forming Process)

  • 오인석;윤동렬;조준행;이명규;김헌영;김형종
    • 소성∙가공
    • /
    • 제29권4호
    • /
    • pp.203-210
    • /
    • 2020
  • In this study, formability and springback behavior of 1.5 GPa grade ultra-high strength steel (UHSS) sheet were predicted through the finite element simulation, and structural stability of the forming dies was verified by the coupled forming-structural analysis. Uniaxial tension and uniaxial tension-compression tests were performed to obtain experimental data for modeling the springback properties of the sheet material. The springback values predicted by simulation were compared with those from actual measurements. The results calculated from the kinematic hardening model were found to be much more accurate than those from the isotropic hardening model. Deformation of the forming die and springback of the product were calculated by the coupled forming-structural analysis. The higher the strength of the die material, the smaller the surface displacement of the die and the springback of the product. The internal stresses of the dies made of three materials, FC300, FCD550 and STD11 were compared with the yield stress of each material. The results provided a basis for determining the most suitable material for each part of the die set. As a result, simulation techniques have been established for predicting formability and springback in the UHSS sheet forming process.

자동차 외판 플랜징/헤밍 공정에 대한 유한요소해석 모델링 (Finite Element Modeling of Flanging/Hemming Process for Automotive Panels)

  • 김헌영;임희택;최광용;이우홍;박춘달
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.103-107
    • /
    • 2002
  • The 2nd forming process of flanging/hemming has recently many interest because it determines external quality of automobile. It is difficult to apply finite element simulation in flanging/hemming due to small element size which needs for expression of bending effect on the die corner and big model size of side door, back door, tank lid and like opening Parts. This paper shows the process of flanging/hemming simulation using finite element model for automotive panels. The explicit finite element program PAM-STAMP$\^$TM/ was used to simulate the flanging and hemming operations.

  • PDF

판재성형 해석시 금형내의 공기거동 모델링 (Modeling the Behavior of Trapped Air in Die Cavity During Sheet Metal Forming)

  • 최광용;김헌영
    • 소성∙가공
    • /
    • 제20권5호
    • /
    • pp.377-386
    • /
    • 2011
  • During stamping processes, the air trapped between sheet metal and the die cavity can be highly compressed and ultimately reduce the shape accuracy of formed panels. To prevent this problem, vent holes and passages are sometimes drilled into the based on expert experience and know-how. CAE can be also used for analyzing the air behavior in die cavity during stamping process, incorporating both elasto-plastic behavior of sheet metal and the fluid dynamic behavior of air. This study presents sheet metal forming simulation combined simultaneously with simulation of air behavior in the die cavity. There are three approaches in modeling of air behavior. One is a simple assumption of the bulk modulus having a constant pressure depending on volume change. The next is the use of the ideal gas law having uniform pressure and temperature in air domain. The third is FPM (Finite point method) having non-uniform pressure in air domain. This approach enables direct coupling of mechanical behavior of solid sheet metal and the fluid behavior of air in sheet metal forming simulation, and its result provides the first-hand idea for the location, size and number of the vent holes. In this study, commercial software, PAM-$STAMP^{TM}$ and PAM-$SAFE^{TM}$, were used.

가변곡률을 가진 나선형 블레이드 제작을 위한 원추형 롤 성형 공정설계 (Process Design of Conical Roll-Shaping for Fabrication of Variable Curvature Spiral Blade)

  • 양성문;심도식;지호성;백준호;김봉식;안석영;박상후
    • 한국정밀공학회지
    • /
    • 제33권11호
    • /
    • pp.911-918
    • /
    • 2016
  • A conical roll-shaping process was proposed for fabrication of a metallic spiral blade applied to a small-scale wind turbine system. A spiral blade has continuously different curvatures, with a range of 100 to 350 mm radius. To fabricate this complex shape, we developed a conical roll-shaping process having two main conical rollers for feeding a blank sheet, and two cylindrical side rollers for control of local bending. For clear understanding of the process parameters, numerical analyses were conducted using a commercial code, Pam-Stamp. This study optimized the effects of process parameters, such as gap and angle between the main rollers and side rollers, and also the movement of side rollers. In order to increase the forming efficiency, a central rotation point was also calculated by the analytical approach. This developed rolling process can thus be utilized in a sheet metal forming process for obtaining spirally curved sheet metal shapes.

용접판재의 U-벤딩시 스프링백 특성에 관한 실험적 연구 (Experimental Investigation of the Springback Characteristics of Tailor-Welded Strips in U-bending)

  • 신장모;장성호;허영무;서대교
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.48-53
    • /
    • 2002
  • Sheet or plate bending is one of the most important industrial metal forming processes. And considerable attention has been focused on gaining a better understanding of many of bending characteristics. One of defaults in bending process is the springback. In this study, the springback characteristics of tailor-welded strips in U-bending process was investigated. Furthermore, not only the relationships between the springback and the process variables such as the geometry of the tools and thickness combination of workpiece but also the heat effect which affects the springback due to welding process was experimentally considered. First, tailor-welded strips are joined by the laser welding process and consisted of two types of thickness combinations of the SCPI sheet, 0.8t${\times}$1.2t and 0.8${\times}$1.6t to investigate the effect of different thickness combination on the springback. Secondly, two different directionally welded strips, one was welded along the centerline of the strip-width and the other was along the centerline of strip-length, were adopted to compare the effects of the location of weld line on the springback. And three punch profile radii of 3, 9, and 15 m were used. Some cases of the experimental results were simulated by using a commercial FEM code, PAM-STAMP to compare the experimental results to the analytical ones.

  • PDF

레이저 용접 판재의 U-벤딩시 스프링백 특성에 관한 연구 (Springback Characteristics of Tailor-Welded Strips in U-bending)

  • 장성호;신장모;서대교
    • 소성∙가공
    • /
    • 제12권5호
    • /
    • pp.440-448
    • /
    • 2003
  • Sheet or plate bending is one of the most important industrial metal forming processes. Considerable attention has been focused on gaining a better understanding of bending characteristics. One of defaults in bending process is the springback. In this study, the springback characteristics of tailor-welded strips in U-bending process was investigated. Furthermore, effect of the process variables such as the geometry of the tools, thickness combination of workpiece, and welding prcoessing on springback were experimentally clarified. First, tailor-welded strips are joined by the laser welding process and consisted of two types of thickness combinations of the SCPl sheet, $0.8t{\times}1.2t$ and $0.8t{\times}1.6t$ to investigate the effect of different thickness combination on the springback. Secondly, two different directionly welded strips, one was welded along the centerline of the strip-width and the other was along the centerline of strip-length, were adopted to compare the effects of the location of weld line on the springback. Some cases of the experimental results were compared to the results simulated by using a commercial FEM code, PAM-STAMP and the theoretical results using the springback formula as well.