• 제목/요약/키워드: Stall Speed

검색결과 109건 처리시간 0.028초

95인승급 터보프롭 중형항공기 꼬리날개 사이징 (Tail Sizing of 95-Seat Type Turboprop Aircraft)

  • 이장호;강영신;배효길;이해창
    • 항공우주시스템공학회지
    • /
    • 제7권3호
    • /
    • pp.15-19
    • /
    • 2013
  • Tail wing is important to designing of civil aircrafts, because it is responsible for aircraft stability and control. Tail wing has a role in aircraft control and makes aircraft fly stably without any pilot control input. Also, designing of tail wing determine trim drag force in whole aircraft. Center of gravity(CG) of aircraft travels with various effects as placement of passenger's seats, location of cargo bay, etc. In designing horizontal tail volume, aircraft CG travel has to be considered to have margin so that it should be sized to provide adequate stability and control for the airplane's entire CG range throughout the flight envelope. Finally, it is essential to have sufficient elevator control to perform stall at forward CG for all flaps down configurations. Such stalls establish the FAR stall speed which airplane take-off and landing performance. This paper deals with the process for tail wing design regarding the aircraft CG travel and results for 95-seat type turboprop aircraft.

Numerical Investigation of Internal Flow Field for Diffuser Passage Compressor

  • Yamagami, Mai;Tsuchiya, Naoki;Kato, Dai;Kodama, Hidekazu;Yamamoto, Kazuomi;Enomoto, Shunji;Horiguchi, Yasuo;Outa, Eisuke
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.136-142
    • /
    • 2008
  • The influence of different grids on numerical prediction of subsonic compressor performance and stall was investigated. Two types of grids were examined, structured H type grid and structured O-H type grid. Evaluations were conducted by comparing the numerical results with experimental results obtained from a low-speed single-stage rig test for a new concept compressor, called diffuser passage compressor, aiming at improving tip clearance sensitivity. At low mass flow operating conditions, the numerical calculation with O-H type grid showed that the lowest mass flow operating point for which the calculation was able to converge was almost the same as the lowest steady mass flow obtained from the rig test. On the other hand, the numerical calculation with structured H type grid diverged at higher mass flow operating point. It was found that this difference was attributed to the effect of double-valuedness of H type grid that existed at leading edge on the boundary layer development on the blade surface.

  • PDF

가변 풍력발전 시스템의 최대출력 제어를 위한 Fuzzy 제어기 설계 (A fuzzy logic Controller design for Maximum Power Extraction of variable speed Wind Energy Conversion System)

  • 김재곤;김병륜;허욱열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 D
    • /
    • pp.2307-2309
    • /
    • 2004
  • This paper presents a modeling and simulation of a fuzzy controller for maximum power extraction of a grid-connected wind energy conversion system with a link of a rectifier and an inverter. It discusses the maximum power control algorithm for a wind turbine and proposes, in a graphical form, the relationships of wind turbine output, rotor speed, power coefficient, tip-speed ratio with wind speed when the wind turbine is operated under the maximum power control. The control objective is to always extract maximum power from wind and transfer the power to the utility by controlling both the pitch angle of the wind turbine blades and the inverter firing angle. Pitch control method is mechanically complicated, but the control performance is better than that of the stall regulation method. The simulation results performed on MATLAB will show the variation of generator's rotor angle and rotor speed, pitch angle, and generator output.

  • PDF

벌새의 비행메커니즘과 유동특성에 대한 2차원 수치해석 연구 (A Two-dimensional Numerical Study of Hummingbird's Flight Mechanisms and Flow Characteristics)

  • 이현도;김진호;김종암
    • 한국항공우주학회지
    • /
    • 제37권8호
    • /
    • pp.729-736
    • /
    • 2009
  • 벌새(Selasphorus rufus)의 날갯짓 운동에 의한 양력발생 및 추력발생 메커니즘을 이해하고자 2차원 수치해석을 수행하였다. 날갯짓 운동의 궤적은 풍동 실험에서 관찰된 결과를 모델링하여 해석하였다. 비행속도에 따라 날갯짓 운동 궤적이 달라지고, 그 결과 양력 및 추력의 발생 메커니즘이 변화하는 것을 알 수 있었다. 본 연구에서는 이를 통하여 비행속도를 저속비행과 고속비행으로 구분하여 물리적인 이해를 하고자 하였다. 양력발생의 경우에는 기존의 날갯짓 비행의 주된 양력발생 메커니즘인 앞전와류효과(Leading Edge Vortex Effect), 실속지연(Delayed Stall), 후류포착(Wake capture)등의 메커니즘을 확인하였으며, 벌새에서 유일하게 관찰되는 Upstroke에서의 양력발생 메커니즘을 유동특성 분석을 통하여 확인하였다. 추력발생의 경우에는 벌새의 골격 구조, 와류형성 및 압력구배에 따른 합력 성분의 분해를 통하여 이해할 수 있었다.

전자식 선박디젤엔진의 엔진제어기 개발/연구 (A Development Study on an Engine Control Module of an Electronic Marine Diesel Engine)

  • 심한섭;이민광;이강윤
    • 한국기계가공학회지
    • /
    • 제14권5호
    • /
    • pp.134-140
    • /
    • 2015
  • A control program of an engine control module (ECM) was developed, and its control performance was verified on a 750Ps marine diesel engine. The control method was designed for an engine rotational speed control system. For ECM hardware, the commercial rapid control prototype (RCP) ECM was used. The programming tool for control algorithm development was the MatLab/Simulink. The main control algorithm assembled many control models as engine cranking, run, and stall. Each model has sub-models to input/output control signals. The target engine speed was input signal from a speed control lever, and control output signal of the ECM was sent to the unit-injectors for fuel injection. The engine test was performed under various conditions of engine rotational speeds and dynamometer loads. The test results show that the control function of the ECM is suitable for electrical marine diesel engines.

NREL 풍력터빈 블레이드 20% 축소모델 풍동시험 결과 (Wind tunnel test for the 20% scaled down NREL wind turbine blade)

  • 조태환;김철완;김양원;노주현
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.33.2-33.2
    • /
    • 2011
  • The 'NREL Phase VI' model with a 10.06m diameter was tested in the NASA Ames tunnel to make a reference data of the computational models. The test was conducted at the one rotational speed, blade tip speed 38m/s and the Reynolds number of the sectional airfoils in that test was around 1E6. The 1/5 scale down model of the 'NREL Phase VI' model was used in this paper to study the power characteristics in low Reynolds number region, 0.1E6 ~ 0.4E6 which is achievable range for the conventional wind tunnel facilities. The torque generated by the blade was directly measured by using the torque sensor installed in the rotating axis for a given wind speed and rotational speed. The power characteristics below the stall condition, lambda > 4, was presented in this paper. The power coefficient is very low in the condition below the Re. 0.2E6 and rapidly increases as the Re. increases. And it still increases but the variation is not so big in the condition above the Re. 0.3E6. This results shows that to study the performance of the wind turbine blade by using the scaled down model, the Re. should be larger than the 0.3E6.

  • PDF

자동변속기의 과도특성 분석을 위한 토크 컨버터의 변동 파라미터 성능 모델 개발 (Development of the Variable Parametric Performance Model of Torque Converter for the Analysis of the Transient Characteristics of Automatic Transmission)

  • 임원식;이진원
    • 한국자동차공학회논문집
    • /
    • 제10권1호
    • /
    • pp.244-254
    • /
    • 2002
  • To enhance the acceleration performance and fuel consumption rate of a vehicle, the torque converter is modified or newly-developed with reliable analysis model. Up to recently, the one dimensional performance model has been used for the analysis and design of torque converter. The model is described with constant parameters based on the concept of mean flow path. When it is used in practice, some experiential correction factors are needed to minimize tole estimated error. These factors have poor physical meaning and cannot be applied confidently to the other specification of torque converter. In this study, the detail dynamic model of torque converter is presented to establish the physical meaning of correction factors. To verify the validity of model, performance test was carried out with various input speed and oil temperature. The effect of oil temperature on the performance is analysed, and it is applied to the dynamic model. And, to obtain the internal flow pattern of torque converter, CFD(Computational Fluid Dyanmics) analysis is carried out on three-dimensional turbulent flow. Correction factors are determined from the internal flow pattern, and their variation is presented with the speed ratio of torque converter. Finally, the sensitivity of correction factors to the speed ratio is studied for the case of changing capacity factor with maintaining torque ratio.

CFD를 이용한 풍력발전 터빈의 3차원 유동해석 및 성능평가에 관한 연구 (A Study on Three-Dimensional Flow Characteristics and Power Performance of HAWT(Horizontal Axis Wind Turbine) by CFD)

  • 김범석;김정환;남청도;이영호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.447-450
    • /
    • 2002
  • The purpose of this 3-D numerical simulation is to calculate and examine a 500 kW Horizontal Axis Wind Turbine (HAWT) power performance and 3-D rotor flow characteristics, which are compared to calculation data from Delft University. The experimental approach, which has been the main method of investigation, appears to be reaching its limits, the cost increasing relate with the size of wind turbines. Hence, the use of Computational Fluid Dynamics (CFD) techniques and Navier-Stokes solvers is considered a very serious contender. We has used the CFD software package CFX-TASCflow as a modeling tool to predict the power performance and 3-D flow characteristics of a wind turbine on the basis of its geometry and operating data. The wind turbine with 40m diameters rotor, it was scaled to compare with the calculation data from delft university. The HAWT, which has eight-rpm variations are investigated respectively. The pitch angle is $+0.5^{\circ}$and wind speed is fixed at 5m/s. The tip speed ratio (TSR) of the HAWT ranging from 2.89 to 9.63.

  • PDF

CFD에 의한 NREL Phase IV 풍력터빈 성능해석 (Performance Analysis of the NREL Phase IV Wind Turbine by CFD)

  • 김범석;김만응;이영호
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.652-655
    • /
    • 2008
  • Despite of the laminar-turbulent transition region co-exist with fully turbulence region around the leading edge of an airfoil, still lots of researchers apply to fully turbulence models to predict aerodynamic characteristics. It is well known that fully turbulent model such as standard k-${\varepsilon}$ model couldn't predict the complex stall and the separation behavior on an airfoil accurately, it usually leads to over prediction of the aerodynamic characteristics such as lift and drag forces. So, we apply correlation based transition model to predict aerodynamic performance of the NREL (National Renewable Energy Laboratory) Phase IV wind turbine. And also, compare the computed results from transition model with experimental measurement and fully turbulence results. Results are presented for a range of wind speed, for a NREL Phase IV wind turbine rotor. Low speed shaft torque, power, root bending moment, aerodynamic coefficients of 2D airfoil and several flow field figures results included in this study. As a result, the low speed shaft torque predicted by transitional turbulence model is very good agree with the experimental measurement in whole operating conditions but fully turbulent model(k-${\varepsilon}$) over predict the shaft torque after 7m/s. Root bending moment is also good agreement between the prediction and experiments for most of the operating conditions, especially with the transition model.

  • PDF

인증규정을 고려한 KLA-100항공기 고양력장치 최적화 설계 (Flap Design Optimization for KLA-100 Aircraft in compliance with Airworthiness Certification)

  • 박진환;;;김상호;이재우
    • 한국항공우주학회지
    • /
    • 제41권8호
    • /
    • pp.649-656
    • /
    • 2013
  • 고양력장치는 항공기의 이착륙 및 실속성능에 큰 영향을 미친다. 그러므로, 이 논문에서는 주어진 2차원 플랩 형상에 대하여 가장 최적화된 플랩 위치와 변위각을 얻는 슬롯티드 플랩 설계 최적화 프로세스을 제안하였다. 플랩 변위각 및 Gap, Overlap을 양력을 증가시키는 주요 변수로 생각하였고, 정확한 해석결과를 위해 공력해석 소프트웨어로 ANSYS Fluent 13.0.0$^{(R)}$을 사용하였다. 최적화된 형상은 SQP(Sequential Quadratic Programming) 알고리즘을 통해 도출됐으며, 최적화된 플랩과 함께 ADSP(Aircraft Design Synthesis Program) in-house 성능해석 코드를 사용하여 항공기의 성능을 시험하였고, 이착륙 거리, 실속속도 등의 성능변수들이 KAS-VLA 인증규정을 만족하는 결과를 얻었다.