• 제목/요약/키워드: Stall

검색결과 471건 처리시간 0.026초

CFD에 의한 NREL Phase IV 풍력터빈 성능해석 (Performance Analysis of the NREL Phase IV Wind Turbine by CFD)

  • 김범석;김만응;이영호
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2008년도 춘계학술대회논문집
    • /
    • pp.652-655
    • /
    • 2008
  • Despite of the laminar-turbulent transition region co-exist with fully turbulence region around the leading edge of an airfoil, still lots of researchers apply to fully turbulence models to predict aerodynamic characteristics. It is well known that fully turbulent model such as standard k-${\varepsilon}$ model couldn't predict the complex stall and the separation behavior on an airfoil accurately, it usually leads to over prediction of the aerodynamic characteristics such as lift and drag forces. So, we apply correlation based transition model to predict aerodynamic performance of the NREL (National Renewable Energy Laboratory) Phase IV wind turbine. And also, compare the computed results from transition model with experimental measurement and fully turbulence results. Results are presented for a range of wind speed, for a NREL Phase IV wind turbine rotor. Low speed shaft torque, power, root bending moment, aerodynamic coefficients of 2D airfoil and several flow field figures results included in this study. As a result, the low speed shaft torque predicted by transitional turbulence model is very good agree with the experimental measurement in whole operating conditions but fully turbulent model(k-${\varepsilon}$) over predict the shaft torque after 7m/s. Root bending moment is also good agreement between the prediction and experiments for most of the operating conditions, especially with the transition model.

  • PDF

풍력 블레이드의 결빙에 의한 공력 영향성 전산 예측 (COMPUTATIONAL PREDICTION OF ICING EFFECTS ON AERODYNAMIC CHARACTERISTICS OF A WIND TURBINE BLADE)

  • 박지호;정기영;명노신
    • 한국전산유체공학회지
    • /
    • 제18권3호
    • /
    • pp.51-59
    • /
    • 2013
  • A significant change in aerodynamic characteristics of wind turbine blade can occur by ice formed on the surface of the blade operated in cold climate. The ice accretion can result in performance loss, overloading due to delayed stall, and excessive vibration associated with mass imbalance. In this study, the impact of ice accretion on the aerodynamic characteristics of NREL 5MW wind turbine blade sections is examined by a CFD-based method. It is shown that the thickness of ice accretion increases from the root to the tip and the effects of icing conditions such as relative wind velocity play a significant role in the shape of ice accretion. In addition, the computational results are used to assess the degradation in the lift and drag coefficients of the blade sections.

Milk Quality and Antimicrobial Resistance against Mastitis Pathogens after Changing from a Conventional to an Experimentally Organic Dairy Farm

  • Suriyasathaporn, Witaya
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제23권5호
    • /
    • pp.659-664
    • /
    • 2010
  • The present study was to investigate the effect of the transition from conventional to organic dairy farming on the antimicrobial resistant pattern of pathogens in milk. A farm with tie-stall management, with an average herd size of 20 milking cows, was selected based on the owner' willingness to accept, for at least 6 months, the highly restricted protocol developed in this study. Comparisons of bacterial isolates and antimicrobial susceptibilities before changing to an organic farm system (BEFORE) and for 6 months after (AFTER) operating the experimental organic farm system were performed by Fisher's Exact Chi-square tests. Significant levels were defined at p<0.05. During the AFTER period, average frequency of antibiotic treatment was decreased from more than 3 cases/month to less than 1 case/month during which the antibiotic use was authorized only by the veterinarian. In total, 92 and 70 quarter milk samples from 24 and 18 cows during BEFORE and AFTER, respectively, were included in the study. Overall, isolates ranged from a non-resistant level for cephazolin to a very high resistant level to streptomycin (64.71% to 95.45%). Percentages of antimicrobial resistant isolates during BEFORE were significantly higher than during AFTER for ampicillin (43.48% and 5.88%, respectively) and streptomycin (95.45% and 64.71%, respectively). In conclusion, percentages of antimicrobial resistant isolates were decreased after 6 months of operating as an organic farm system.

고받음각 2차원 에어포일 주위의 비정상 유동의 진동 특성에 관한 연구 (ANALYSIS OF UNSTEADY OSCILLATING FLOW AROUND TWO DIMENSIONAL AIRFOIL AT HIGH ANGLE OF ATTACK)

  • 유재경;김재수
    • 한국전산유체공학회지
    • /
    • 제18권1호
    • /
    • pp.1-6
    • /
    • 2013
  • Missile and fighter aircraft have been challenged by low restoring nose-down pitching moment at high angle of attach. The consequence of weak nose-down pitching moment can be resulting in a deep stall condition. Especially, the pressure oscillation has a huge effect on noise generation, structure damage, aerodynamic performance and safety, because the flow has strong unsteadiness at high angle of attack. In this paper, the unsteady aerodynamics coefficients were analyzed at high angle of attack up to 50 degrees around two dimensional NACA0012 airfoil. The two dimensional unsteady compressible Navier-Stokes equation with a LES turbulent model was calculated by OHOC (Optimized High-Order Compact) scheme. The flow conditions are Mach number of 0.3 and Reynolds number of $10^5$. The lift, drag, pressure, entropy distribution, etc. are analyzed according to the angle of attack. The results of average lift coefficients are compared with other results according to the angle of attack. From a certain high angle of attack, the strong vortex formed by the leading edge are flowing downstream as like Karman vortex around a circular cylinder. The primary and secondary oscillating frequencies are analyzed by the effects of these unsteady aerodynamic characteristics.

외부 오염물 증착에 의한 풍력 터빈 날개 단면의 공력 성능 저하 예측 (PREDICTION OF AERODYNAMIC PERFORMANCE LOSS OF A WIND TURBINE BLADE SECTION DUE TO CONTAMINANT ACCUMULATION)

  • 양태호;최재훈;유동옥;권오준
    • 한국전산유체공학회지
    • /
    • 제18권1호
    • /
    • pp.91-97
    • /
    • 2013
  • In the present study, the effects of contaminant accumulation and surface roughness on the aerodynamic performance of wind turbine blade sections were numerically investigated by using a flow solver based on unstructured meshes. The turbulent flow over the rough surface was modeled by a modified ${\kappa}-{\omega}$ SST turbulence model. The calculations were made for the NREL S809 airfoil with varying contaminant sizes and positions at several angles of attack. It was found that as the contaminant size increases, the degradation of the airfoil performance becomes more significant, and this trend is further amplified near the stall condition. When the contaminant is located at the upper surface near the leading edge, the loss in the aerodynamic performance of the blade section becomes more critical. It was also found that the surface roughness leads to a significant reduction of lift, in addition to increased drag.

천음속 압축기 동익을 지나는 삼차원 유동의 수치해석 (Numerical Calculation of Three-Dimensional F1ow through A Transonic Compressor Rotor)

  • 이용갑;김광용
    • 대한기계학회논문집B
    • /
    • 제25권10호
    • /
    • pp.1384-1391
    • /
    • 2001
  • Three-dimensional flow analysis is implemented to investigate the flow through transonic axial-flow compressor rotor(NASA R67) and to evaluate the performances of Abid's low-Reynolds-number k-$\omega$ and Baldwin-Lomax turbulence models. A finite volume method is used fur spatial discretization. The equations are solved implicitly in time by the use of approximate factorization. The upwind difference scheme is used for inviscid terms and viscous terms are approximated with central difference. The flux-difference-splitting method of Roe is used to obtain fluxes at the cell faces. Numerical analysis is performed near peak efficiency and near stall. The results are compared with the experimental data for NASA R67 rotor. Blade-to-Blade Mach number distributions are compared to confirm the accuracy of the code. From the results, it is concluded that Abid'k-$\omega$ model is better for the calculation of flow rate and efficiency than Baldwin-Lomax model. But, the predictions for Mach number and shock structure are almost the same.

수치해석을 활용한 1단 천음속 압축기 내부 유동장 분석 (Numerical Investigation on Internal Flow Field of a Single-Stage Transonic Axial Compressor)

  • 송지한;황오식;박태춘;임병준;양수석;강영석
    • 한국유체기계학회 논문집
    • /
    • 제15권6호
    • /
    • pp.85-91
    • /
    • 2012
  • Numerical simulations on a single stage transonic compressor which is developed by Korea Aerospace Research Institute are carried out and their results are compared with experimental data for cross validations. Comparisons between experimental data and numerical simulation results show good agreements on a performance curve, static pressure and total pressure distributions. CFD results show that there is a clear interaction between tip leakage flow and normal shock in the rotor passage. Tip leakage flows are almost dissipated after the strong normal shock and it forms a strong recirculation near the blade tip. Also a large separation region grows on the suction surface just after the normal shock. As the pressure ratio and blade loading increase, the normal shock line moves upstream and it starts to deviate from the blade leading edge. Then the tip leakage flow does not overcome the strong adverse pressure gradient and flow blockage originated from the tip recirculation region. As a result, the tip leakage flow heads for the neighboring blade leading edge, which results in a compressor stall.

수동변속기용 클러치의 관성시험장치에 관한 연구 (Study on a Full-Size Tester for Manual Transmision Clutches)

  • 이병수;신현명;허만대
    • 한국자동차공학회논문집
    • /
    • 제12권4호
    • /
    • pp.101-109
    • /
    • 2004
  • Three models with various degree-of-freedom for a manual transmission clutch full-size tester have been developed and the models' reliability and accuracy have been verified using the measured data. A simulation study has also been conducted to understand dynamic behavior of the tester. The model for this simulation study includes clutch disk friction and damper dynamics. The developed model is very accurate in terms of maximum torque exerted on the clutch, slip duration and the vibration response except a slight difference compared to the measured data. In a history graph of the clutch torque, the maximum torque response from simulation is flat but the measured is sunken with a noticeable curvature. This phenomenon is found to be irrelevant to the dynamics of the full-size tester but is originated from the characteristics of the clutch itself. Thus, the full-size tester has been proven to be a reliable tester for clutch's power and torque transmission capability. To obtain a better understanding of clutch's characteristics and relationship between full-size tester and other testing methodologies, future research directions have been suggested.

스마트무인기 로터 공탄성 및 훨플러터 안정성 해석 (Rotor Aeroelastic and Whirl Flutter Stability Analysis for Smart-UAV)

  • 김도형;이주영;김유신;이명규;김승호
    • 한국항공우주학회지
    • /
    • 제34권6호
    • /
    • pp.75-82
    • /
    • 2006
  • 틸트로터 항공기는 기존의 헬리콥터에 비해 두 배 정도 빠르고 비행 가능 영역은 수배에 이른다. 로터시스템을 틸팅(tilting)하여 전진비행하기 때문에 기존 헬기 블레이드에서 발생되는 전진면의 압축성 효과와 후퇴면의 실속을 방지하는 효과를 얻을 수 있다. 그러나 틸트로터 항공기에서는 훨플러터(whirl flutter)로 알려진 공탄성 불안정성으로 인해 최대 전진속도에 제한을 가지게 된다. 본 논문에서는 우선 로터시스템 자체의 공탄성 안정성에 대한 파라메트릭 연구를 수행하였고, 피치링크 강성, 짐발 스프링 상수, 원추각이 스마트무인기의 훨플러터 안정성에 미치는 영향을 CAMRAD II를 이용한 해석을 통해 고찰하였다.

벨마우스 깊이가 다른 3차원 소형축류홴의 공력특성에 대한 대규모 와 모사 (Large Eddy Simulation on the Aerodynamic Performance of Three-Dimensional Small-Size Axial Fan with the Different Depth of Bellmouth)

  • 김장권;오석형
    • 동력기계공학회지
    • /
    • 제19권6호
    • /
    • pp.19-25
    • /
    • 2015
  • The unsteady-state, incompressible and three-dimensional large eddy simulation(LES) was carried out to analyze the aerodynamic performance of three-dimensional small-size axial fan(SSAF) with the different depth of bellmouth. The static pressure coefficients analyzed by LES predict a little bit larger than measurements except stall region regardless of the installation depth between SSAF and bellmouth. Moreover, static pressure efficiencies analyzed by LES show about maximum 30% at the actual operating point ranges, but measurements do not. Therefore, if the blades of conventional SSAF have some more rigidity and complete dynamic balance, the aerodynamic performance of SSAF will be some more improved. In consequence, LES shows the best prediction performance in comparison with any other Reynolds averaged Navier-Stokes(RANS) method.