• Title/Summary/Keyword: Stairwell pressurization

Search Result 10, Processing Time 0.024 seconds

Comparison of the Performance of a Smoke Control System by Pressurization (가압방식에 따른 전실제연설비의 성능 비교 연구)

  • Kwon, Oh-Hyun;Nam, Jun-Seok;Nam, Sang-Ok;Ryou, Hong-Sun
    • Fire Science and Engineering
    • /
    • v.31 no.2
    • /
    • pp.24-28
    • /
    • 2017
  • This study compared the performance of a smoke control system in the case of a fire with that in the case of non-fire. Single-pressurization in the vestibule, single-pressurization in the stairwell, simultaneous smoke control of the stairwell and vestibule, which was the pressurization of smoke control, were assessed. The result showed that simultaneous smoke control of the stairwell and vestibule can maintain the differential pressure and is least influenced for the evacuation of evacuees. In addition, for the status of smoke control in Korea and the proper pressurization method, these results highlight the necessity of improving the current pressurization method through the survey.

The Influence on the Stack effect that Pressure differential system to smoke control in High-rise buildings (초고층 건축물에서 급기가압제연이 연돌효과에 미치는 영향)

  • Lim, Chae-Hyun;Park, Yong-Hwan
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.235-238
    • /
    • 2008
  • High-rise buildings with stack effect caused by the foreclosure, which significantly delayed the spread of a fire in effects of these stack effect driving force said. In this research on the stack effect of the lobby if the pressurization of the stairwell analysis of the pressure distribution of the CONTAMW. Overall, the pressurization of the lobby makes it stairwell amount of pressure(+) to the zone in pressure designed to prevent the spread of smoke control performance and found that, the way a normal state and sub-pressurization in the stairwell with stack effect of the turbulence Such as the formation of the upper flow, but, in the upper atmosphere with pressurization was formed by the underlying trend.

  • PDF

Full Scale Testing of the Effect of Stairwell Pressurization on Pressure Differential and Flow Velocity

  • Son, Bong-Sae;Park, Kyung-Hwan;Chang, Young-Bae
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.11 no.3
    • /
    • pp.83-89
    • /
    • 2011
  • A series of full-scale testing was conducted to examine the effect of stairwell pressurization on the pressure differential between the stairwell and the auxiliary room and between the auxiliary room and the residence. Also, flow velocity profiles at open doors were measured. The building tested was a condominium that had twenty floors above the ground and two floors underground. For pressurization of the stairs, a blower was used to supply air into the stairwell at one location underground. Thirteen different cases were tested, and test variables included the number of floors with open doors and the flow rate of the air supply. When the doors on the first floor were open, the pressure differential between the stairwell and the auxiliary room was distributed almost uniformly except for locations near the first floor. When the flow rate was in the range of 180~270 CMM and the doors of one floor were open, the flow velocity could satisfy the requirement of fire safety standards and the stairwell pressure was positive at all levels. However, the minimum pressure requirement (10 Pa) could not always be satisfied. When doors on two floors were open, the flow velocity requirement could be satisfied by increasing the flow rate, but it was found impractical to satisfy the minimum pressure requirement without causing excessive pressure differential in the area near the blower.

The Influence of Zoning at Shafts of Super-tall Buildings on the Stack Effect and Stairwell Pressurization (초고층건물 샤프트의 수직구획이 연돌효과 및 급기가압 성능에 미치는 영향)

  • Kim, Beom-Kyue;Kim, Hak-Jung;Yeo, Yong-Ju;Leem, Chae-Hyun;Park, Yong-Hwan
    • Fire Science and Engineering
    • /
    • v.26 no.5
    • /
    • pp.92-98
    • /
    • 2012
  • This study analyzed the effect of zoning on the distribution of pressure differentials caused by stack effect and air pressurization in a center core type of 80 story super-tall building. The results showed that maximum pressure difference more than 250 Pa can be generated by stack effect without zoning. Zoning of stairwell only resulted in 10 Pa reduction of maximum pressure difference, however, zoning of both stairwell and EV shaft especially at the same floor revealed 50 % reduction in stack effect. It was also analysed that the minimum required air flow rate occurred when the stairwell temperature reached 50 % of temperature difference between indoor and outdoor.

Elevator Pressurization in Tall Buildings

  • Klote, John H.
    • International Journal of High-Rise Buildings
    • /
    • v.2 no.4
    • /
    • pp.341-344
    • /
    • 2013
  • During a building fire, smoke can flow through elevator shafts threatening life on floors remote from the fire. Many buildings have pressurized elevators intended to prevent such smoke flow. The computer program, CONTAM, can be used to analyze the performance of pressurization smoke control systems. The design of pressurized elevators can be challenging for the following reasons: (1) often the building envelope is not capable of effectively handling the large airflow resulting from elevator pressurization, (2) open elevator doors on the ground floor tend to increase the flow from the elevator shaft at the ground floor, and (3) open exterior doors on the ground floor can cause excessive pressure differences across the elevator shaft at the ground floor. To meet these challenges, the following systems have been developed: (1) exterior vent (EV) system, (2) floor exhaust (FE) system, and ground floor lobby (GFL) system.

The Study on the Solution of Stack effect in the Vertical shaft of High-rise Buildings (고층건축물 수직 샤프트 연돌효과 해소방법에 대한 연구)

  • Kim, Jin-Soo;Chang, Hee-Chul
    • 한국방재학회:학술대회논문집
    • /
    • 2007.02a
    • /
    • pp.242-245
    • /
    • 2007
  • Stack effects occurred in the stairwell, an important evacuation means of the high-rise building, give a big impact on stairwell pressure difference distribution and it could obstruct evacuation from the building, so should be controlled within proper range. Computer simulation was conducted with CONTAMW2.4 to find the solution of stack effects of the high-rise building. It was able to solve the imbalance pressure difference with a pressurization and a depressurization supplied by fans on higher and lower parts of the stairwell.

  • PDF

Numerical Analysis on Pressurization System of Smoke Control in Consideration of Flow Rate of Supply and Leakage (보충량과 누설량을 고려한 급기가압 제연시스템의 수치해석 연구)

  • Kim, Jung-Yup;Shin, Hyun-Joon
    • Fire Science and Engineering
    • /
    • v.24 no.5
    • /
    • pp.87-93
    • /
    • 2010
  • The fact that the smoke hinders evacuation and fire-fighting activities as well as becomes the major cause of life casualty emphasizes the importance of smoke control system. As one of the fire safety standards designed to secure the smoke safety, NFSC501A (Design Guide for Smoke Control System of Special Evacuation Stairwell and Lobby) has been proposed, preventing smoke from penetrating into the smoke-free escape route by raising the pressure of the smoke control zone higher than fire area. For model building of 20 stories, pressurization system was designed according to standard and pressure field of compartments in whole building induced by pressurization system was analyzed using the network model.

Numerical Analysis on Pressurization System of Smoke Control in Consideration of Stack Effect (연돌효과를 고려한 급기가압 제연시스템의 수치해석 연구)

  • Kim, Jung-Yup
    • Fire Science and Engineering
    • /
    • v.27 no.4
    • /
    • pp.1-6
    • /
    • 2013
  • When the pressurization system that uses difference of pressure for smoke control is designed, the factors influencing on the pressure field in building should be applied to design process and the stack effect is one of the main factors. Numerical analysis based on network model in 20-story building is carried out to analyze the pressurization system of smoke control in consideration of stack effect. Calculations are conducted for three conditions, that is, stack effect only, pressurization only and stack effect plus pressurization. Results including the detailed pressure field and flow rate at each floor are represented and the stack effect are effectively visualized. Meanwhile, the pressure of stairwell is increased as much as the summation of the stack effect and pressurization, and the problem induced by rise of pressure is pointed out.

A Study on the Conditions of Injection Pressurization in the Smoke-Control Zone II. Analysis of the Conditions for Closing Force of Fire Door with Variation of Angular Velocity (제연구역 방화문의 각속도 변화와 폐쇄 조건 분석)

  • Lee, Chang-Wook;Kim, Hong-Jin;Choi, Young-Ki;Youm, Moon Cheon;Ryou, Hong-Sun
    • Fire Science and Engineering
    • /
    • v.27 no.2
    • /
    • pp.6-10
    • /
    • 2013
  • This study aims to construct the performance data for smoke-control zone and realize the safety of injection and pressurization room which is composed of supply air pressure zone, vestibule, smoke-control zone and stairwell. To obtain this, smoke-control system and the device of the opening-closing force of fire door are manufactured. This subject is the analysis of the closing force, angular velocity and fire door size in the case of fixed volume flow rate. Based on the results, closing force increased as fire door size and closing angular velocity increases. Also, it is remark that there exists a critical angular velocity, which maintains constant maximum closing force even though the angular velocity increases more.

The Study on the Effect of Elevator Movement on the Pressure Difference between Vestibule and Living room in High-rise Buildings (초고층 건축물에서 엘리베이터 구동이 부속실과 화재실 간 차압형성에 미치는 영향연구)

  • Park, Younggi;Hong, Kibea;Ryou, Hong Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.1
    • /
    • pp.85-91
    • /
    • 2018
  • Recently, there have been a lot of casualties due to fires in high-rise buildings. The toxic gases and smokes generated by fires in high-rise buildings spread rapidly through the elevator shaft and stairwell, due to the stack effect, and can cause critical casualties. To reduce the number of casualties, smoke control systems have been introduced. Smoke control systems play an essential role in preventing the spread of smoke in high-rise buildings and securing the evacuation route. Also, in high-rise buildings, evacuation by an elevator is considered to be indispensable. However, the pressure field in the shaft is strongly disturbed when the elevator is moving and this can affect the performance of the smoke control system. Therefore, in this study, we experimentally and numerically analyzed the effect of elevator movement on the pressure difference between the vestibule and living room by building a model using the sandwich pressurization method based on the performance based design. To consider the leakage areas in high-rise buildings, e.g. the windows, fire door and elevator, the National Fire Safety Codes and area ratio were used. The elevator speed in the model building was varied between 20 m/s and 100 m/s corresponding to a real elevator speed of 7 m/s~17 m/s. As a result, the relationship between the pressure difference and elevator speed was found to be ${\Delta}P=40{\cdot}{\exp}$(-Ves /-104.7)-23.735. This result can be used to take into consideration the effect of elevator movement when designing smoke control systems.