• Title/Summary/Keyword: Stair

Search Result 367, Processing Time 0.02 seconds

A Study on Changes in Knee Joint Loading during Stair Gait with Unstable Shoes (계단 보행 시 불안정성 신발 착용에 따른 슬관절 부하에 대한 연구)

  • Park, Ji-Won;Kim, Yun-Jin
    • The Journal of Korean Physical Therapy
    • /
    • v.26 no.2
    • /
    • pp.74-81
    • /
    • 2014
  • Purpose: The purpose of this study is to compare kinematics and kinetics on the knee joint between stair gait with unstable shoes and barefoot in healthy adult women. Methods: Seventeen healthy adult women were recruited for this study. The subjects performed stair ascent and descent with unstable shoes and barefoot. The experiment was repeated three times for each stair gait with unstable shoes and barefoot. Measurement and analysis of the movements of the knee joint were performed using a three-dimensional analysis system. Results: Statistically significant differences in the knee muscle force of semimembranosus, biceps femoris-long head, biceps femoris-short head and sartorius, patellar ligament, medial gastrocnemius, and lateral gastrocnemius were observed between unstable shoes and barefoot gait during stair ascent. Statistically significant differences in the knee muscle force of sartorius, rectus femoris, medial gastrocnemius, and lateral gastrocnemius were observed between unstable shoes and barefoot gait during stair descent. Statistically significant differences in the knee flexor moment of semitendinosus, biceps femoris-long head, biceps femoris-short head, sartorius, rectus femoris, vastus intermedialis, medial gastrocnemius, and lateral gastrocnemius were observed between unstable shoes and barefoot gait during stair ascent. Conclusion: Therefore, wearing unstable shoes during stair gait in daily life is considered to influence knee joint kinematics and kinetics due to the unstable shoes, and thus suggest the possibility that reducing the risks of pain, and knee osteoarthritis, stabilizing the knee joint caused by changes in the loading of the knee joint.

Comparison of Both Legs EMG Symmetry during Over-Ground Walking and Stair Walking in Stroke Patients

  • Jeong, Mu-Geun;Kim, Joong-Hwi
    • The Journal of Korean Physical Therapy
    • /
    • v.27 no.4
    • /
    • pp.228-233
    • /
    • 2015
  • Purpose: Gait is the most basic element when evaluating the quality of life with activities of daily living under ordinary life circumstances. Symmetrical use of the lower extremities requires complicated coordination of all limbs. Thus, this study examined asymmetry of muscle activity quadriceps femoris and tibialis anterior as a baseline for training during over-ground walking and stair walking of stroke patients. Methods: Subjects were 14 stroke patients included as one experimental group. Gait speed used in this study was determined by the subject. Low extremity paretic and non-paretic EMG was compared using the surface EMG system. Results: The low extremity EMG difference was statistically significant during over-ground walking and stair walking (p<0.05). The result of low extremity EMG substituted symmetry ratio formula was compared to EMG symmetry ratio in both legs during over-ground walking and stair walking. The average symmetry ratio of quadriceps femoris during over-ground walking was 0.65, and average symmetry ratio of quadriceps femoris during stair walking was 0.47, with significant difference (p<0.05). Conclusion: EMG data was higher in stair walking than over-ground walking. However, in the comparison of symmetry ratio, asymmetric EMG of quadriceps femoris was significantly increased during stair walking. These findings suggested that application of stair walking for strengthening of both legs can be positive, but the key factor is maintaining asymmetrical posture of both legs. Therefore, physical therapists should make an effort to reduce asymmetry of quadriceps femoris power during stair walking by stroke patients.

Effect of Shoe Heel Height on Vastus Medialis and Vastus Lateralis Electromyographic Activity During Stair Ascending and Descending (신발 뒤굽 높이가 계단 올라가기 및 내려오기 동안 내측광근과 외측광근의 근 활성도에 미치는 영향)

  • Oh, Duck-Won;Kim, Suhn-Yeop
    • Physical Therapy Korea
    • /
    • v.16 no.3
    • /
    • pp.24-31
    • /
    • 2009
  • This study aimed to investigate the effect of differing heel heights on the electromyographic (EMG) activity in vastus medialis (VM) and vastus lateralis (VL) during stair ascending and descending activities. A total of 26 healthy women volunteered to perform stair-ascending and stair-descending tasks with 3 heel heights: barefoot, 3 cm, and 7 cm. The EMG activities of the VM and VL were recorded during the tasks. During the stair ascending and descending tasks, the EMG activities of both VM and VL significantly changed with differing the heel heights (p<.05). Moreover, the EMG activities of VM and VL during the stair ascending task were significantly higher than the corresponding values during the stair-descending task (p<.05). However, there were no significant differences between the VM:VL EMG ratios for the 3 heel heights (p>.05). The VM:VL EMG ratios between the 2 tasks differed significantly in the 7 cm high heel condition (p<.05). Despite an increase in the EMG activities in both VM and VL during stair ascending and descending tasks, there was no change in the relative EMG intensities of VM and VL, which was measured by calculating the VM:VL ratio this result indicates that no VM:VL imbalances were elicited. The relative EMG intensities of VM and VL during stair descent were lower than the corresponding values during the ascent, suggesting that VM and VL may show an imbalance in the eccentric activation during the weight-acceptance phase. This study provides useful information that will facilitate future research on how heel height affects muscle activity around the knee joint.

  • PDF

Plantar Pressure Distribution During Level Walking, and Stair Ascent and Descent in Asymptomatic Flexible Flatfoot

  • Kim, Jeong-Ah;Lim, One-Bin;Yi, Chung-Hwi
    • Physical Therapy Korea
    • /
    • v.20 no.4
    • /
    • pp.55-64
    • /
    • 2013
  • The first purpose was to identify the plantar pressure distributions (peak pressure, pressure integral time, and contact area) during level walking, and stair ascent and descent in asymptomatic flexible flatfoot (AFF). The second purpose was to investigate whether peak pressure data during level walking could be used to predict peak pressure during stair walking by identifying correlations between the peak pressures of level walking and stair walking. Twenty young adult subjects (8 males and 12 females, age $21.0{\pm}1.7$ years) with AFF were recruited. A distance greater than 10 mm in a navicular drop test was defined as flexible flatfoot. Each subject performed at least 10 steps during level walking, and stair ascent and descent. The plantar pressure distribution was measured in nine foot regions using a pressure measurement system. A two-way repeated analysis of variance was conducted to examine the differences in the three dependent variables with two within-subject factors (activity type and foot region). Linear regression analysis was conducted to predict peak pressure during stair walking using the peak pressure in the metatarsal regions during level walking. Significant interaction effects were observed between activity type and foot region for peak pressure (F=9.508, p<.001), pressure time integral (F=5.912, p=.003), and contact area (F=15.510, p<.001). The regression equations predicting peak pressure during stair walking accounted for variance in the range of 25.7% and 65.8%. The findings indicate that plantar pressures in AFF were influenced by both activity type and foot region. Furthermore the findings suggest that peak pressure data during level walking could be used to predict the peak pressure data during stair walking. These data collected for AFF can be useful for evaluating gait patterns and for predicting pressure data of flexible flatfoot subjects who have difficulty performing activities such as stair walking. Further studies should investigate plantar pressure distribution during various functional activities in symptomatic flexible flatfoot, and consider other predictors for regression analysis.

A physiological assessment of stair dimensions (계단규격에 대한 생리학적 평가)

  • 명노해;이순요;김형범
    • Proceedings of the ESK Conference
    • /
    • 1995.10a
    • /
    • pp.87-90
    • /
    • 1995
  • Biomechanical can physchological approaches have provided the optimum stair dimensions but physiological approach has never been used in assessing the common method of assessing the optimum stair dimension. Therefore, this study was conducted to investigate the validity of the physiological measure of heart rate in assessing the optimum stair dimensions. Sixteen subjects were asked to walk up three different stairs with their normal walking speed. The results showed that the physiological approach with the heart rate difference was found to be valid in assessing the optimum stair dimension. The optimum stair dimension from this study (riser length for 185 mm and tread length for 310 mm) was chosen because it was similar to optimum dimension by the psychological approach (Irvine et al., 1990).

  • PDF

The Effect of Stair Depth on Ground Reaction Force Parameters - Asymmetric and Variability Indices - (계단보행 시 계단 너비가 지면반력 파라미터에 미치는 영향 -비대칭 지수 및 일관성 지수-)

  • Yoon, Suk-Hoon
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.1
    • /
    • pp.169-178
    • /
    • 2008
  • The goals of this study were to provide data of 3 dimensional ground reaction force(GRF) parameters during stair ascent and descent on three different stair runs and to investigate variability and asymmetry index of them. 10 healthy adults participated in this study and performed 7 different types of gait with 10 trials each. After data analysis, following results were found. Firstly, stair run did not affect on the pattern of GRF parameters, coefficient of variation and asymmetry index. Secondly, a significant different GRF pattern was found between level walking and stair walking. Especially, ascending stair walking has only large Fz1 and small Fz3 while level walking and descending stair walking have a "M" shape connected by Fz1, Fz2 and Fz3. Thirdly, only vertical GRF parameters of stair walking revealed acceptable coefficient of variation and asymmetry index.

Design and Control of a Wearable Robot for Stair-Climbing Assistance (계단 보행 근력 보조를 위한 착용형 로봇의 설계 및 제어)

  • Kim, Myeong-Ju;Kang, Byeong-Hyeon;Kim, Ok-Sik;Seo, Ki-Won;Kim, Jung-Yup
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.26 no.1
    • /
    • pp.89-99
    • /
    • 2017
  • This paper describes the development of a thigh wearable robot for power assistance during stair climbing. In the wearable robot developed in this study, high-power BLDC motors and high-capacity harmonic reduction gears are used to effectively assist the thigh muscle during stair climbing. In particular, normal ground and stair are distinguished accurately by using wireless smart shoes, and the stair climbing assistance is performed by activating the actuators at an appropriate time. Impedance of the hip joint was effectively reduced by performing friction compensation of the gears, and a wearing adjustment mechanism was designed to fit the robot to the thigh by conveniently modifying the width and tilting angle of the robot using set collars. Consequently, the performance of the developed thigh wearable robot was verified through stair climbing experiments with EMG measurement.

A Kinetic Analysis of the Lower Extremity during Walking on Three Different Stair width in Healthy Adults (성인 계단보행 시 계단 너비에 따른 하지의 운동역학적 분석)

  • Jun, Hyun-Min;Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.18 no.4
    • /
    • pp.161-169
    • /
    • 2008
  • The purpose of this study was to investigate kinetic variables of the lower extremity during walking on three different stair widths in healthy adults. Ten healthy college-aged adults($23.5{\pm}3.5$) recruited for this study. Each stairs with the same height and length(l8cm and 90cm) under the Korean Constructional Law but three different widths(26cm, 31cm and 36cm) were conducted for this study. One force plate(9286AA, Kistler Co.) was put on third stairs. One-way ANOVA was performed to find the stair width effects during stair walking and the following findings ware obtained. There was significantly decreased in ankle resultant joint moment at Pull-Up phase(p<.05) and, significantly increased in knee extension moment during mid-stance phase as stair width increase(p<.05), but there was no significance in ankle resultant joint moment was found at Forward Continuance Phase in Ascending Stair Walking and There was significantly increased in ankle resultant joint moment as stair width increase during mid-stance phase(p<.05) and no significance in knee and hip resultant moments among the stair width in descending stair walking.

Comparison of Evacuation Efficiency for Stair Width and Code for Occupant Load Calculation in High-rise Buildings (고층의 주상복합건축물 계단폭과 수용인원 산정기준에 따른 피난효율의 비교)

  • Lee, Yang-Ju;Ko, Kyoung-Chan;Park, Woe-Chul
    • Fire Science and Engineering
    • /
    • v.25 no.1
    • /
    • pp.1-6
    • /
    • 2011
  • An evacuation simulation was carried out to confirm evacuation efficiency for stair width and problems in calculation of occupant load for high-rise buildings. The evacuation time and number of evacuated persons from a 39 story condominium-mercantile building were calculated by using Simulex for stair widths of 1.2 m, 1.5 m, and 1.8 m. The total occupant load based on the Korean code was higher than the number of actual residents by 2.3 times, and that based on the NFPA 101 Life Safety Code by 2.6 times, respectively. For the occupant load based on the Korean code, smaller stair width resulted in lower evacuation efficiencies due to bottlenecks in egress. For the actual residents and NFPA code-based occupant load, a high evacuation efficiency and negligible effects of the stair width on evacuation efficiency were confirmed. It was shown that there was a bottleneck even at the stair width of 1.8 m for the Korean code-based occupants, while the stair width of 1.2 m provided safe egress to the actual residents or NFPA code-based occupants. This recommended further studies on possibility of lowering the level of the Korean code in calculation of the occupant load.

A Study on the Recognition Method of the Stair Size for the Climbing Mobile Robot (이동 로보트의 계단 승월을 위한 계단 크기 인식 기법에 관한 연구)

  • 김승범;이응혁;김병수;김승호;민홍기;홍승홍
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.10
    • /
    • pp.1269-1279
    • /
    • 1995
  • A mobile robot in a nuclear power plant is usually needed to equip the ability of going up and down stairs for a some kind of inspection. For this purpose, it is necessary for the mobile robot to figure out the size of stairs laid on a navigation path to gurantee robot's moving freely. In this paper, to measure the size of stairs existing in front of a mobile robot we designed the stair size recognition unit which can measure the stair's height and width using an ultrasonic sensor and/or a CCD camera. Also to obtain higher reliability of ultrasonic sensing data we proposed the horizontal sensing method. On the assupmtions that the mobile robot generates a trajectory while ascending stairs, we simulated it on a IBM compatible computer. The result showed that the suggested method satisfied our purpose. In a stair size estimation, the detected stair's height error was about .+-.3mm, and width was about .+-.5mm.

  • PDF