• Title/Summary/Keyword: Stainless steel plate-pattern

Search Result 8, Processing Time 0.026 seconds

Effects of Stainless Steel Plate-Patterns on the Thermal Distortion and Surface Temperature of Aluminum Frypan (알루미늄 프라이팬에 부착된 스텐리스판의 패턴이 열 변형 및 표면온도에 미치는 영향)

  • Moon, Sungmo;Yoon, Myungsik
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.5
    • /
    • pp.227-231
    • /
    • 2020
  • This article investigated the effects of stainless steel plate-patterns bonded to aluminum frypan on the thermal distortion and surface temperature of the frypan during gas or induction heating. Two different stainless steel plate-patterns were employed: type A contains only circular holes and type B has not only circular holes but also vacant spaces of 0.5 mm thick and 40 mm long straight line crossing 60 mm long curved line. The bottom of the frypan was distorted during heating when type A stainless steel plate-bonded frypan while no significant thermal distortion was observed for type B stainless steel plate-bonded frypan during heating. Temperature of the frypan surface showed the same trend during gas heating, irrespective of stainless steel plate-patterns. During induction heating, however, the frypan with type B stainless steel plate-pattern showed lower surface temperature than the frypan with type A stainless steel plate-pattern. It is concluded that Type B stainless steel plate-pattern with circular holes and vacant spaces of lines is very effective for minimizing a thermal distortion and lowering the surface temperature of an aluminum frypan during induction heating.

Surface Morphology and Electrical Property of PEMFC (Proton Exchange Membrane Fuel Cell) Bipolar Plates (고분자전해질 연료전지용 바이폴라 플레이트의 표면형상과 전기적 특성)

  • Song, Yon-Ho;Yun, Young-Hoon
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.3
    • /
    • pp.161-166
    • /
    • 2008
  • The multi-films of a metallic film and a transparent conducting oxide (TCO, indium-tin oxide, ITO) film were formed on the stainless steel 316 and 304 plates by a sputtering method and an E-beam method and then the external metallic region of the stainless steel bipolar plates was converted into the metal nitride films through an annealing process. The multi-film formed on the stainless steel bipolar plates showed the XRD patterns of the typical indium-tin oxide, the metallic phase and the metal substrate and the external nitride film. The XRD pattern of the thin film on the bipolar plates modified showed two metal nitride phases of CrN and $Cr_2N$ compound. Surface microstructural morphology of the multi-film deposited bipolar plates was observed by AFM and FE-SEM. The metal nitride film formed on the stainless steel bipolar plates represented a microstructural morphology of fine columnar grains with 10 nm diameter and 60nm length in FE-SEM images. The electrical resistivity of the stainless steel bipolar plates modified was evaluated.

Acoustic emission technique to identify stress corrosion cracking damage

  • Soltangharaei, V.;Hill, J.W.;Ai, Li;Anay, R.;Greer, B.;Bayat, Mahmoud;Ziehl, P.
    • Structural Engineering and Mechanics
    • /
    • v.75 no.6
    • /
    • pp.723-736
    • /
    • 2020
  • In this paper, acoustic emission (AE) and pattern recognition are utilized to identify the AE signal signatures caused by propagation of stress corrosion cracking (SCC) in a 304 stainless steel plate. The surface of the plate is under almost uniform tensile stress at a notch. A corrosive environment is provided by exposing the notch to a solution of 1% Potassium Tetrathionate by weight. The Global b-value indicated an occurrence of the first visible crack and damage stages during the SCC. Furthermore, a method based on linear regression has been developed for damage identification using AE data.

A Study on the Vibration Behavior of Composite Laminate under Tensile Loading by ESPI (ESPI에 의한 인장하중 하에서의 복합재 적층판의 진동 거동에 관한 연구)

  • Yang, Seung-Pil;Kim, Koung-Suk;Jung, Hyun-Chul;Chang, Ho-Seob;Kim, Chong-Soo
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.516-521
    • /
    • 2000
  • Most of studies, using ESPI method, have handled tension, thermal and vibration analysis, and is limited to isotropic materials. However, tension and vibration simultaneously are loaded in real structure. Also, almost study using ESPI method is locally limited to the analysis on the isotropic materials and a few studies on the anisotropic materials have reported. Existing methods, such as the accelerometer method and FEA method, to analyze vibration have some disadvantages. Using the accelerometer method that is generally used to analyze vibration phenomena, it is impossible to analyze vibration on the oscillating body and one can observe no vibration mode shape during experiment. In case of the FEA method, it is difficult to define boundary conditions correctly if the shape of a body tested is complex, and one can just obtain vibration mode shapes on the peak amplitude in each modes. In this study, plane plate of stainless steel(STS304), isotropic material, that is used as structural steel is analyzed about vibration characteristics under tension. Also, in the study of stainless steel, the characteristics of composite material(AS4/PEEK) used as high strength structural material in aircraft is evaluated about vibration under tension, and studies the effect of tension on vibration.

  • PDF

The Arrangement Process Optimization of Vacuum Glazing Pillar using the Design of Experiments (실험계획법을 이용한 진공유리 Pillar의 배치공정 최적화)

  • Kim, Jae Kyung;Jeon, Euy Seik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.1
    • /
    • pp.73-78
    • /
    • 2012
  • In this study, the optimal process condition was induced about the pillar arrangement process of applying the screen printing method in the manufacture process of vacuum glazing panel. The high precision screen printing is technology which pushes out the paste and spreads it by using the squeegee on the stainless steel plate in which the pattern is formed. The screen printing method is much used in the flat panel display field including the LCD, PDP, FED, organic EL, and etc for forming the high precision micro-pattern. Also a number of studies of screen printing method have been conducted as the method for the cost down through the improvement of productivity. The screen printing method has many parameters. So we used Taguchi method in order to decrease test frequencies and optimize this parameters efficiently. In this study, experiments of pillar arrangement were performed by using Taguchi experimental design. We analyzed experimental results and obtained optimal conditions which are 4 m/s of squeegee speed, $40^{\circ}$ of squeegee angle and distance between metal mask and glass.

Finite Element Simulation and Experimental Study on the Electrochemical Etching Process for Fabrication of Micro Metal Mold (미세금형 가공을 위한 전기화학식각 공정의 유한요소 해석 및 실험결과 비교)

  • Ryu, Heon-Yul;Im, Hyeon-Seung;Cho, Si-Hyeong;Hwang, Byeong-Jun;Lee, Sung-Ho;Park, Jin-Goo
    • Korean Journal of Materials Research
    • /
    • v.22 no.9
    • /
    • pp.482-488
    • /
    • 2012
  • To fabricate a precise micro metal mold, the electrochemical etching process has been researched. We investigated the electrochemical etching process numerically and experimentally to determine the etching tendency of the process, focusing on the current density, which is a major parameter of the process. The finite element method, a kind of numerical analysis, was used to determine the current density distribution on the workpiece. Stainless steel(SS304) substrate with various sized square and circular array patterns as an anode and copper(Cu) plate as a cathode were used for the electrochemical experiments. A mixture of $H_2SO_4$, $H_3PO_4$, and DIW was used as an electrolyte. In this paper, comparison of the results from the experiment and the numerical simulation is presented, including the current density distribution and line profile from the simulation, and the etching profile and surface morphology from the experiment. Etching profile and surface morphology were characterized using a 3D-profiler and FE-SEM measurement. From a comparison of the data, it was confirmed that the current density distribution and the line profile of the simulation were similar to the surface morphology and the etching profile of the experiment, respectively. The current density is more concentrated at the vertex of the square pattern and circumference of the circular pattern. And, the depth of the etched area is proportional to the current density.

A photoelastic study on the initial stress distribution of the upper anterior teeth retraction using combination loop archwire and sliding mechanics (Combination loon archwire와 활주역학을 이용한 상악전치의 후방 견인시 나타나는 초기 응력 분포에 관한 광탄성학적 연구)

  • Yim, Kang-Soon;Lee, Jin-Woo;Cha, Kyung-Suk
    • The korean journal of orthodontics
    • /
    • v.34 no.4 s.105
    • /
    • pp.303-312
    • /
    • 2004
  • An unfavorable tipping movement can occur during the retraction of anterior teeth because orthodontic force is loaded by brackets positioned far from the center of resistance. To avoid this unfavorable movement, a compensating curved wire or lingual root torque wire is used. The purpose of this study is to investigate, using photoelastic material, the distribution of initial stress associated with the retraction of the incisors according to the degree of the compensating curve, to model changes associated with tooth ud alveolar bone structure. The following results were obtained by analysis of the polarizing plate of the effects of initial stress resulting from retraction of the anterior teeth: 1. When the incisors were retracted using combination archwire or sliding mechanics, the maximal polarizing pattern of the apical area decreased as the degree of the compensating owe increased from 0 to 15 to 30. 2. When the incisors were retracted by the combination archwire or sliding mechanics, the maximal polarizing pattern of the canine and premolar area increased as the degree of the compensating curve increased from 0to 15to 30. 3. A lower degree of polarizing patterns were associated with the combination archwire technique than the sliding mechanics technique at a given force. The above results indicate that there is no significant difference between the combination loop archwire technique and sliding mechanics, for the retraction of maxillary anterior teeth with decreased lingual tipping tendency by a compensating curve on the arch wire. However, the use of sliding mechanics is more effective for the prevention of lingual inclination of the anterior teeth, because the hook used in sliding mechanics is closer to the center of resistance of the maxillary anterior teeth.

미세금형 가공을 위한 전기화학식각공정의 유한요소 해석 및 실험 결과 비교

  • Ryu, Heon-Yeol;Im, Hyeon-Seung;Jo, Si-Hyeong;Hwang, Byeong-Jun;Lee, Seong-Ho;Park, Jin-Gu
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.81.2-81.2
    • /
    • 2012
  • To fabricate a metal mold for injection molding, hot-embossing and imprinting process, mechanical machining, electro discharge machining (EDM), electrochemical machining (ECM), laser process and wet etching ($FeCl_3$ process) have been widely used. However it is hard to get precise structure with these processes. Electrochemical etching has been also employed to fabricate a micro structure in metal mold. A through mask electrochemical micro machining (TMEMM) is one of the electrochemical etching processes which can obtain finely precise structure. In this process, many parameters such as current density, process time, temperature of electrolyte and distance between electrodes should be controlled. Therefore, it is difficult to predict the result because it has low reliability and reproducibility. To improve it, we investigated this process numerically and experimentally. To search the relation between processing parameters and the results, we used finite element simulation and the commercial finite element method (FEM) software ANSYS was used to analyze the electric field. In this study, it was supposed that the anodic dissolution process is predicted depending on the current density which is one of major parameters with finite element method. In experiment, we used stainless steel (SS304) substrate with various sized square and circular array patterns as an anode and copper (Cu) plate as a cathode. A mixture of $H_2SO_4$, $H_3PO_4$ and DIW was used as an electrolyte. After electrochemical etching process, we compared the results of experiment and simulation. As a result, we got the current distribution in the electrolyte and line profile of current density of the patterns from simulation. And etching profile and surface morphologies were characterized by 3D-profiler(${\mu}$-surf, Nanofocus, Germany) and FE-SEM(S-4800, Hitachi, Japan) measurement. From comparison of these data, it was confirmed that current distribution and line profile of the patterns from simulation are similar to surface morphology and etching profile of the sample from the process, respectively. Then we concluded that current density is more concentrated at the edge of pattern and the depth of etched area is proportional to current density.

  • PDF