• 제목/요약/키워드: Stainless steel mesh

검색결과 71건 처리시간 0.026초

스테인레스 스틸 와이어 메쉬 보강에 따른 교각의 연성능력 평가 (Evaluation of Ductility for Bridge Piers Retrofitted by Stainless Steel Wire Mesh)

  • 김성훈;김대곤;이규남;김선호;김석희
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.879-884
    • /
    • 2002
  • The objective of this study is to investigate the seismic capacity of the non-seismically detailed RC bridge piers before and after applying a seismic retrofitting method using stainless steel wire mesh. Total nine circular section RC piers were constructed. Different lap splice longitudinal reinforcement details were adapted for four specimens and various types of stainless steel wire mesh were applied for the remaining five specimens. Harmonic cyclic lateral load was applied on each specimen under a constant axial load. The test results indicated that the existing circular piers have low seismic capacity while the stainless steel wire mesh retrofitting method improves the seismic capacity considerably. In addition, test results revealed that the circular section piers could have a considerable amount of ductility if longitudinal bars are not lap-spliced in potential plastic hinge zone. Based on this experimental study it could be concluded that the seismic performance, that is ductility and energy absorption capacity, of the non-seismically detailed RC bridge piers would be increased by applying the stainless steel wire mesh seismic retrofitting method.

  • PDF

방사선가교로 제조된 폴리아크릴산 코팅 스테인리스그물망에 의한 유수 분리 (Separation of Water and Oil by Poly(acrylic acid)-coated Stainless Steel Mesh Prepared by Radiation Crosslinking)

  • 노영창;신정웅;박종석;임윤묵;전준표;강필현
    • 방사선산업학회지
    • /
    • 제9권2호
    • /
    • pp.77-84
    • /
    • 2015
  • The stainless steel mesh coated with poly(acrylic acid) hydrogel was fabricated and applied for the separation of water and oil. The stainless steel mesh was immersed in aqueous poly (acrylic acid) solution, and then irradiated by radiation to introduce poly(acrylic acid) hydrogel on the surface of mesh by crosslinking. It was possible to separate oil and water from mixtures of oil/water effectively using the hydrogel-coated mesh. The effect of irradiation dose, coating thickness, size of mesh on the separation efficiency was examined.

스테인리스 스틸 촉매 상에서 아세틸렌 분해에 의한 VGCF 나노물질의 성장 형태 연구 - 환원 전처리 및 수소공급 효과 (A Study on the Growth Morphology of VGCF Nano-Materials by Acetylene Pyrolysis over Stainless Steel Catalyst - Effect of Reduction Pretreatment and Hydrogen Supply)

  • 박석주;이동근
    • Korean Chemical Engineering Research
    • /
    • 제44권6호
    • /
    • pp.563-571
    • /
    • 2006
  • 스테인리스 스틸 메쉬 표면을 환원 전처리하여 그 표면상에 직접 탄소나노튜브 또는 탄소나노섬유와 같은 VGCF (vapor grown carbon fiber) 나노물질을 합성 성장시켰다. 수소 가스를 이용하여 스테인리스 스틸 메쉬를 환원 처리함으로써, 금속 표면상에 bi-modal 분포의 작은 촉매입자와 큰 촉매입자들이 함께 생성되었다. 환원된 스테인리스 스틸 메쉬로부터 VGCF의 합성 시, 수소 가스가 공급되지 않은 경우는 작은 촉매입자로부터 탄소나노튜브들이 주로 성장되었으나, 특정 량의 수소 가스가 공급될 경우 큰 촉매입자로부터 탄소나노섬유들이 주로 성장되었다.

Strengthening of axially loaded concrete columns using stainless steel wire mesh (SSWM)-numerical investigations

  • Kumar, Varinder;Patel, P.V.
    • Structural Engineering and Mechanics
    • /
    • 제60권6호
    • /
    • pp.979-999
    • /
    • 2016
  • Stainless steel wire mesh (SSWM) is an alternative material for strengthening of structural elements similar to fiber reinforced polymer (FRP). Finite element (FE) method based Numerical investigation for evaluation of axial strength of SSWM strengthened plain cement concrete (PCC) and reinforced cement concrete (RCC) columns is presented in this paper. PCC columns of 200 mm diameter with height 400 mm, 800 mm and 1200 mm and RCC columns of diameter 200 mm with height of 1200 mm with different number of SSWM wraps are considered for study. The effect of concrete grade, height of column and number of wraps on axial strength is studied using finite element based software ABAQUS. The results of numerical simulation are compared with experimental study and design guidelines specified by ACI 440.2R-08 and CNR-DT 200/2004. As per numerical analysis, an increase in axial capacity of 15.69% to 153.95% and 52.39% to 109.06% is observed for PCC and RCC columns respectively with different number of SSWM wraps.

전기화학 에칭 공정을 이용한 스테인리스 스틸 메쉬의 방수 특성 연구 (A Study on Water-Proof Characteristics of a Stainless Steel Mesh by Electrochemical Etching Process)

  • 이찬;김지민;김형모
    • Tribology and Lubricants
    • /
    • 제37권5호
    • /
    • pp.189-194
    • /
    • 2021
  • A straightforward, yet effective surface modification method of stainless steel mesh and its interesting anti-wetting characteristics are reported in this study. The stainless steel mesh is electrochemically etched, and the specimen has both micro and nano-scale structures on its surface. This process transforms the two types of mesh specimens known as the regular and dense specimens into hydrophobic specimens without applying any hydrophobic chemical coating process. The fundamental wettability of the modified mesh is analyzed through a dedicatedly designed experiment to investigate the waterproof characteristics, for instance, the penetration threshold. The waterproof characteristics are evaluated in a manner that the modified mesh resists as high as approximately 2.7 times the pressure compared with the bare mesh, i.e., the non-modified mesh. The results show that the penetration threshold depends primarily on the advancing contact angles, and the penetration stop behaviors are affected by the contact angle hysteresis on the surfaces. The findings further confirm that the inexpensive waterproof meshes created using the proposed straightforward electrochemical etching process are effective and can be adapted along with appropriate designs for various practical applications, such as underwater devices, passive valves, and transducers. In general, , additional chemical coatings are applied using hydrophobic materials on the surfaces for the applications that require water-repelling capabilities. Although these chemical coatings can often cause aging, the process proposed in this study is not only cost-effective, but also durable implying that it does not lose its waterproof properties over time.

Synthesis and characterization of carbon doped TiO2 photocatalysts supported on stainless steel mesh by sol-gel method

  • Tijani, JO.;Fatoba, OO.;Totito, TC.;Roos, WD.;Petrik, LF.
    • Carbon letters
    • /
    • 제22권
    • /
    • pp.48-59
    • /
    • 2017
  • This study synthesized pure anatase carbon doped $TiO_2$ photocatalysts supported on a stainless steel mesh using a sol-gel solution of 8% polyacrylonitrile (PAN)/dimethylformamide (DMF)/$TiCl_4$. The influence of the pyrolysis temperature and holding time on the morphological characteristics, particle sizes and surface area of the prepared catalyst was investigated. The prepared catalysts were characterized by several analytical methods: high resolution scanning electron microscopy (HRSEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), and X-ray photoelectron spectroscopy (XPS). The XRD patterns showed that the supported $TiO_2$ nanocrystals are typically anatase, polycrystalline and body-centered tetragonal in structure. The EDS and XPS results complemented one another and confirmed the presence of carbon species in or on the $TiO_2$ layer, and the XPS data suggested the substitution of titanium in $TiO_2$ by carbon. Instead of using calcination, PAN pyrolysis was used to control the carbon content, and the mesoporosity was tailored by the applied temperature. The supported $TiO_2$ nanocrystals prepared by pyrolysis at 300, 350, and $400^{\circ}C$ for 3 h on a stainless steel mesh were actual supported carbon doped $TiO_2$ nanocrystals. Thus, $PAN/DMF/TiCl_4$ offers a facile, robust sol-gel related route for preparing supported carbon doped $TiO_2$ nanocomposites.

Highly Flexible Dye-sensitized Solar Cell Prepared on Single Metal Mesh

  • Yun, Min Ju;Cha, Seung I.;Seo, Seon Hee;Lee, Dong Y.
    • Current Photovoltaic Research
    • /
    • 제2권3호
    • /
    • pp.79-83
    • /
    • 2014
  • Dye-sensitized solar cells (DSSCs) are applied in the emerging fields of building integrated photovoltaic and electronics integrated photovoltaic like small portable power sources as demands are increased with characteristic advantages. Highly flexible dye-sensitized solar cells (DSSCs) prepared on single stainless steel mesh were proposed in this paper. Single mesh DSSCs structure utilizing the spraying the chopped glass paper on the surface treated stainless steel mesh for integrating the space element and the electrode components, counter electrode component and photoelectrode component were coated on each side of the single mesh. The fabricated single mesh DSSCs showed the energy-conversion efficiency 0.50% which show highly bendable ability. The new single mesh DSSCs may have potential applications as highly bendable solar cells to overcome the limitations of TCO-based DSSCs.

스테인리스 망의 전기화학 폴리싱(ECP) 조건에 따른 가공 특성 (Machining Characteristics according to Electrochemical Polishing (ECP) Conditions of Stainless Steel Mesh)

  • 김욱수;박정우
    • 한국기계가공학회지
    • /
    • 제14권6호
    • /
    • pp.41-48
    • /
    • 2015
  • Stainless steel mesh has been used as a filter in various fields, including domestic, medical, etc. However, the surface before machining may have an adverse effect the product quality and performance because it is not smooth. Especially, adsorbed impurities in the surface result in difficulty in cleaning. Therefore, in this paper, we propose an improved surface quality through electrochemical polishing (ECP). Two electrodes, composed of STS304 (anode) and copper (cathode) underwent machining with two conditions according to polishing time and current density. As the polishing time and current density increase, the surface of curvature decreases, and roughness and material removal rate (MRR) improves. The machined surface roughness and image were obtained through the atomic force microscope (AFM) and stereoscopic microscope. The study also analyzed hydrophilic effect through contact angles. This obtains corrosion resistance, smoothness, hydrophilic property, etc.

Torsional strengthening of RC beams using stainless steel wire mesh -Experimental and numerical study

  • Patel, Paresh V.;Raiyani, Sunil D.;Shah, Paurin J.
    • Structural Engineering and Mechanics
    • /
    • 제67권4호
    • /
    • pp.391-401
    • /
    • 2018
  • Locally available Stainless Steel Wire Mesh (SSWM) bonded on a concrete surface with an epoxy resin is explored as an alternative method for the torsional strengthening of Reinforced Concrete (RC) beam in the present study. An experiment is conducted to understand the behavior of RC beams strengthened with a different configuration of SSWM wrapping subjected to pure torsion. The experimental investigation comprises of testing fourteen RC beams with cross section of $150mm{\times}150mm$ and length 1300 mm. The beams are reinforced with 4-10 mm diameter longitudinal bars and 2 leg-8 mm diameter stirrups at 150 mm c/c. Two beams without SSWM strengthening are used as control specimens and twelve beams are externally strengthened by six different SSWM wrapping configurations. The torsional moment and twist at first crack and at an ultimate stage as well as torque-twist behavior of SSWM strengthened specimens are compared with control specimens. Also the failure modes of the beams are observed. The rectangular beams strengthened with corner and diagonal strip wrapping configuration exhibited better enhancement in torsional capacity compared to other wrapping configurations. The numerical simulation of SSWM strengthened RC beam under pure torsion is carried out using finite element based software ABAQUS. Results of nonlinear finite element analysis are found in good agreement with experimental results.

내진 모사하중에 의한 스테인레스강 와이어 보강 교각의 응답 (Response of Bridge Piers Retrofitted by Stainless Steel Wire under Simulated Seismic Loading)

  • 최준혁;김성훈;이도형
    • 한국강구조학회 논문집
    • /
    • 제21권4호
    • /
    • pp.343-350
    • /
    • 2009
  • 본 연구에서는, 비내진 설계된 철근콘크리트 교각에 대해 스테인레스강 와이어 메쉬와 고강도 침투성 폴리머 몰탈을 사용한 내진보강 기법을 제안하였다. 본 연구의 목적을 위해, 총 6본의 비내진 설계된 교각 실험체에 대해 반복 가력 실험을 수행하였다. 실험결과, 주철근 겹이음을 갖는 비내진 설계된 교각 실험체에 대한 내진보강이 필요하다는 것을 알 수 있었고, 본 연구에서 제안된 보강 기법은, 비내진 설계된 교각의 강도, 강성 및 에너지 소산능력에 증진 효과가 있음을 알 수 있었다. 또한, 제안된 보강 기법은 비탄성 변위 영역을 경험하는 교각의 강도 저감 완화와 함께 연성도 증진에도 효과가 있을 것으로 기대된다.