• 제목/요약/키워드: Stainless steel heat exchanger

검색결과 48건 처리시간 0.024초

Type 316L 스테인리스강의 700℃ 열교환기에의 적용 방법론 (Application methodology of Type 316L stainless steel to a 700℃ heat exchanger)

  • 이형연;남기언;이윤승;어재혁
    • 한국압력기기공학회 논문집
    • /
    • 제20권1호
    • /
    • pp.75-83
    • /
    • 2024
  • In this study, high temperature design and integrity evaluation methodology have been developed for Type 316L stainless steel air-to-sodium heat exchanger which uses 700℃ sodium as coolant. Currently the only design rules that take creep effects into consideration explicitly for the 316L stainless steel subjected to high temperature in the creep range are French RCC-MRx, where elevated temperature designs are possible around 550℃. Absent design coefficients at high temperature were determined based on the material properties newly determined in previous studies, and high-temperature design evaluation methodologies were developed based on 3D finite element analyses on the 700℃ class heat exchanger. In addition, works were conducted on the web-based design evaluation program of HITEP_RCC-MRx including incorporation of material properties and design coefficients up to 700℃. Methodologies on high temperature design evaluations on Type 316L stainless steel high-temperature heat exchanger were suggested.

Stress Corrosion Cracking of Heat Exchanger Tubes in District Heating System

  • Cho, Sangwon;Kim, Seon-Hong;Kim, Woo-Cheol;Kim, Jung-Gu
    • Corrosion Science and Technology
    • /
    • 제18권2호
    • /
    • pp.49-54
    • /
    • 2019
  • The purpose of this paper is to present failure analysis, of the heat exchanger tube in a district heating system. SS304 stainless steel is used, as material for the heat exchanger tube. The heat exchanger operates in a soft water environment containing a small amount of chloride ions, and regularly repeats operation and standstill period. This causes concentration of chloride ions on the outer surface of the tube, as well as repeat of thermal expansion, and shrinkage of the tube. As a result of microscopic examination, cracks showed transgranular as well as branched propagation, and many pits were present, at the initiation point of each crack. Energy disperstive spectroscopy analysis showed Fe and O peak, as well as Cl peak, meaning that cracks were affected by Cl ion. Failure of the tube was caused by chloride-induced stress corrosion cracking by thermal stress, high temperature, and localized enrichment of chloride ions.

스테인리스강 열교환기의 틈부식 방지에 관한 연구 (Study on the Prevention of Crevice Corrosion for a Stainless Steel Heat Exchanger)

  • 임우조;윤병두
    • 수산해양교육연구
    • /
    • 제17권1호
    • /
    • pp.106-114
    • /
    • 2005
  • This paper is a study on the prevention of crevice corrosion for a stainless steel heat exchanger in various pH solutions and with Cl ion concentrations. The electrochemical polarization test and crevice corrosion test of STS 304 for a heat exchanger were carried out. The crevice corrosion aspect, a passive behavior, crevice corrosion behavior, and corrosion protection characteristics of STS 304 using Al-alloy and Mg-alloy galvanic anode were considered. The main results are as follows: 1. The crevice corrosion of STS 304 occurs in the crevice and this corrosion increases pitting according to depth direction. On the other hand, the exterior crevice becomes passive. 2. With changing from a neutral to acid environment and increasing Cl ion concentration, the pitting potential of STS 304 lowers, and thus the crevice corrosion of STS 304 is sensitive. 3. The cathodic protection potential of STS 304 in the crevice is cathodically polarized by increasing Cl ion concentration. Therefore, an Al-alloy galvanic anode is more suitable than a Mg-alloy galvanic anode to protect the crevice corrosion of STS 304.

Materials Integrity Analysis for Application of Hyper Duplex Stainless Steels to Korean Nuclear Power Plants

  • Chang, Hyun-Young;Park, Heung-Bae;Park, Yong-Soo;Kim, Soon-Tae;Kim, Young-Sik;Kim, Kwang-Tae;Jhang, Yoon-Young
    • Corrosion Science and Technology
    • /
    • 제9권5호
    • /
    • pp.187-195
    • /
    • 2010
  • Hyper duplex stainless steels have been developed in Korea for the purpose of application to the seawater system of Korean nuclear power plants. This system supplies seawater to cooling water heat exchanger tubes, related pipes and chlorine injection system. In normal operation, seawater is supplied to heat exchanger through the exit of circulating water pump headers, and the heat exchanged sea water is extracted to the discharge pipes in circulating water system connected to the circulating water discharge lines. The high flow velocity of some part of seawater system in nuclear power plants accelerates damages of components. Therefore, high strength and high corrosion resistant steels need to be applied for this environment. Hyper duplex stainless steel (27Cr-7.0Ni-2.5Mo-3.2W-0.35N) has been newly developed in Korea and is being improved for applying to nuclear power plants. In this study, the physical & mechanical properties and corrosion resistance of newly developed materials are quantitatively evaluated in comparative to commercial stainless steels in other countries. The properties of weld & HAZ (heat affected zone) are analyzed and the best compositions are suggested. The optimum conditions in welding process are derived for ensuring the volume fraction of ferrite(${\alpha}$) and austenite(${\gamma}$) in HAZ and controlling weld cracks. For applying these materials to the seawater heat exchanger, CCT and CPT in weldments are measured. As a result of all experiments, it was found that the newly developed hyper duplex stainless steel WREMBA has higher corrosion resistance and mechanical properties than those of super austenitic stainless steels including welded area. It is expected to be a promising material for seawater systems of Korean nuclear power plants.

소형위성 발사체용 추진제 가압 열교환기 설계 해석 (Heat Exchanger Design Analysis for Propellant Pressurizing System of Satellite Launch Vehicles)

  • 이희준;한상엽;정용갑;조남경;길경섭;김영목
    • 한국전산유체공학회지
    • /
    • 제9권3호
    • /
    • pp.49-56
    • /
    • 2004
  • A heated and expanded helium is used to pressurize liquid propellants in propellant tanks of propulsion system of liquid propellant launch vehicles. To produce a heated and expanded helium, an hot-gas heat exchanger is used by utilizing heat source from an exhausted gas, which was generated in a gas generator to operate turbine of turbo-pump and dumped out through an exhaust duct of engine. Both experimental and numerical approaches of hot-gas heat exchanger design were conducted in the present study. Experimentally, siliconites - electrical resistance types - were used to simulate the full heat condition instead of an exhausted gas. Cryogenic heat exchangers, which were immersed in a liquid nitrogen pool, were used to feed cryogenic gaseous helium in a hot-gas heat exchanger. Numerical simulation was made using commercially utilized solver - Fluent V.6.0 - to validate experimental results. Helically coiled stainless steel pipe and stainless steel exhausted duct were consisted of tetrahedron unstructured mesh. Helium was a working fluid Inside helical heat coil and regarded as an ideal gas. Realizable k-』 turbulent modeling was adopted to take turbulent mixing effects in consideration. Comparisons between experimental results and numerical solutions are Presented. It is observed that a resulted hot-gas heat exchanger design is reliable based on the comparison of both results.

터빈 습분분리재열기 Type-439 스테인리스강 튜브 와전류검사 (Eddy Current Testing of Type-439 S/S Tube of MSR in Turbine System)

  • 이희종;조찬희;정지홍;문균영
    • 한국압력기기공학회 논문집
    • /
    • 제4권2호
    • /
    • pp.50-56
    • /
    • 2008
  • The tubes in heat exchanger are typically made of copper alloy, stainless steel, carbon steel, titanium alloy material. Type-439 ferritic stainless steel is ferromagnetic material, and furnish higher heat transfer rates than austenitic stainless steels and higher resistance to corrosion-induced flaws. Ferritic stainless steel can be found in low-pressure(LP) feedwater heaters and moisture separator reheaters(MSRs) in turbine system. LP feedwater heaters generally utilize thin wall Type-439 stainless steel tubing, whereas MSRs typically employ a heavier wall tubing with integral fins. Service-induced damage can occur on the O.D(outside diameter) surface of Type-439 ferritic stainless steel tubing which is employed for MSRs tubing, and the most typical damage mechanism is vibration-induced tube-to-TSP(tube support plate) wear and fatigue cracking. The wear has been reported that occurs mainly on the OD surface. Accordingly, in this study, we have evaluated the flaw sizing capability of magnetic saturation eddy current technique using magnetic saturation probe and flawed specimen.

  • PDF

판형 열교환기 전열판의 부식 파손 분석 (Corrosion Failure Analysis of Flow Plate in Plate Heat Exchanger)

  • 송민지;최가현;채호병;김우철;김희산;김정구;이수열
    • Corrosion Science and Technology
    • /
    • 제20권4호
    • /
    • pp.204-209
    • /
    • 2021
  • Corrosion failure analysis of the flow plate, which is one of the accessories of the plate heat exchanger in a district heating system, was performed. The flow plate is made of 316 stainless steel, and water at different temperatures in the flow plate exchanges heat in a non-contact manner. The flow plate samples in which water mixing issues occurred were collected. Corrosion-induced pits, oxides, and contaminants were observed at locations where two plates are regularly in contact. The EDS analysis of the surface oxides and contaminants revealed that they were composed of carbon, silicon, and magnesium, which came from chemical adhesives. The IC/ICP analyses showed that the concentration of chloride ions was 30 ~ 40 ppm, which was not sufficient to cause corrosion of stainless steel. In the crevice, a local decrease in dissolved oxygen occurs along with an increase in chloride ions, thus forming an acidic environment. These environments destroyed the passive film of stainless steel, resulting in pits. Moreover, contaminants formed a narrower gap between the two metal plates and inhibited the diffusion of ions, thereby accelerating crevice corrosion.

파이프 재질 및 형태에 따른 에너지 슬래브의 현장 열교환 성능 평가 (Evaluation on in-situ Heat Exchange Efficiency of Energy Slab According to Pipe Materials and Configurations)

  • 이석재;오광근;한신인;박상우;최항석
    • 한국지열·수열에너지학회논문집
    • /
    • 제13권4호
    • /
    • pp.1-7
    • /
    • 2017
  • The energy slab is a ground coupled heat exchanger equipped in building slab structures, which represents a layout similar to the horizontal ground heat exchanger (GHEX). The energy slab is installed as one component of the floor slab layers in order to utilize the underground structure as a hybrid energy structure. However, as the energy slab is horizontally arranged, its thermal performance is inevitably less than the conventional vertical GHEXs. Therefore, stainless steel (STS) pipes are alternatively considered as a heat exchanger instead of high density polyethylene (HDPE) pipes in order to enhance thermal performance of GHEXs. Moreover, not only a floor slab but also a wall slab can be utilized as a heat-exchangeable energy slab in order to maximize the use of underground space effectively. In this paper, four field-scale energy slabs were constructed in a test bed, which consist of the STS and HDPE pipe, and a series of thermal response tests (TRTs) was conducted to evaluate relative heat exchange efficiency per unit pipe length according to the pipe material and the configuration of energy slabs. The energy slab equipped with the STS pipe shows higher thermal performance than the energy slab with the HDPE pipe. In addition, thermal performance of the wall-type energy slab is almost equivalent to the floor-type energy slab.

급기 예열 열교환기에서 에칭 표면 특성이 응축 열전달에 미치는 영향에 관한 연구 (A Study on the Effects of Etching Surface Characteristics on Condensation Heat Transfer in Pre-heating Exchanger)

  • 석성철;황승식;최규홍;신동훈;정태용
    • 에너지공학
    • /
    • 제23권2호
    • /
    • pp.217-222
    • /
    • 2014
  • 일반 가정용 보일러의 열효율을 증진시키기 위해서 콘덴싱 보일러에 부착되는 급기 예열 열교환기의 응축 열전달에 대한 실험을 수행하였다. 본 연구에서는 스테인리스의 표면에 대하여 에칭을 이용하여 표면 거칠기를 부과하였다. 그리고 열전달 성능 평가를 위해 대향유동 열교환기를 폴리카보네이트로 제작하였고 원판과 비교 실험을 수행하였다. 그 결과 에칭 처리한 모든 시편의 총괄열전달계수는 원판에 비해 증가하는 것을 확인할 수 있었고, 에칭 시간이 60초인 시편에서 평균 15%까지 증가하였다. 그리고 AFM 장비를 이용하여 표면 특성에 대한 분석을 통하여 열전달 증진 요인에 대해 연구하였다.

플라스틱 판형 열교환기의 유동 및 열전달 특성에 관한 수치해석적 연구 (A Numerical Study on the Flow and Heat Transfer Characteristics of Plastic Plate Heat Exchanger)

  • 정민호;유성연;한규현;윤홍익
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.1366-1371
    • /
    • 2008
  • Four simulation models of plastic plate heat exchangers are designed and simulated. The flat plate type heat exchanger is designed as the reference model in order to evaluate how much thermal performance increases. The turbulence promoter type heat exchanger is fabricated with cylindrical-type vortex generators and rib-type turbulence promoters. The corrugate type is obtained from the conventional stainless steel compact heat exchangers, which are called the herringbone-type compact heat exchangers. The dimple type heat exchanger has a number of dimples on its surface. In this study, the flow and heat transfer characteristics of the plastic plate heat exchanger are investigated using numerical simulation and compared with experimental results. The flows are assumed as a three-dimensional, incompressible and turbulent model. The standard k-$\varepsilon$ model is used as the turbulent flow modeling, the SIMPLE algorithm is used to treat the coupling between pressure and velocity, and first order upwind scheme is used for discretization of momentum, turbulent and energy. The computational analysis and experimental results both show that the friction coefficient and Nu number is highest in the corrugate type.

  • PDF