• Title/Summary/Keyword: Stainless Steel Sheet

Search Result 91, Processing Time 0.024 seconds

Thermal deformation and thermal stress analysis of pipe during pipe internal fluid freezing (배관의 결빙에 의한 열변형 및 열응력 해석)

  • Park, Yeong-Don;Byeon, Sang-Gyu;Gang, Beom-Su
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.22 no.1
    • /
    • pp.227-237
    • /
    • 1998
  • In case the systems have radioactivity, toxic liquid or expensive fluid, and have to be performed repair work at one point of the system pipe, the formation of an internal ice plug by the removal of heat from the pipe is often consideredas a useful method. In this procedure, an annular jacket is placed around the pipe, and the jacket is then filled with liquid Nitrogen(-196.deg. C). Thermal analysis by the finite element method based on the laboratory experiments has been constructed. The result of the finite element analysis on the experimental model shows to be reasonable, and thus the finite element analysis for different pipe size, material and thickness has been performed to see if the ice plugging procedure in various applications can be safely performed without possibility of damage to the pipe. It has been confirmed that in carbon steel pipes the maximum stress is found around the boundary of the freezing jacket, and the stress increases as pipe thickness increases, but the maximum stress shows no consistency along the increment of the pipe diameter. The maximum stresses appear lower than yield stress in carbon steel. It has been also shown that in stainless steel pipes the maximum stresses are also found around the boundary of the freezing jacket, but almost the same value in spite of different pipe size an thickness, and the maximum stresses show slightly higher than the yield stress of the stainless steel.

A Study on Welding of Dissimilar Materials for Van-Ramp Design and Production (승합차의 램프 디자인과 제작을 위한 이종재료의 접합)

  • Lee, Jung-Hyun;Kim, In-Cheol
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.434-439
    • /
    • 2011
  • There are about 2.4million disabled in Korea, 2009. Also, Korean society entered into an aging society. Therefore disable and elderly are getting more involved in our society. This study proposes simple ramp design for wheel chair users and welding method and condition for manufacturing. In the middle of ramp, screw jack and motor are installed so that ramp can be moved left and right side. To make the ramp moves easily, ramp was fixed by installing LM guide on both sides. Ramp production for using Nd:YAG laser certain dissimilar welding in stainless steel sheet and cold reduced carbon steel. The output was fixed by 3kW, the speed was increased to 2~7m/min, Argon was used as shielding gas and the flow rate was changed to 10~30L/min. The proper welding condition is the output 3kW and welding speed 2~5m/min.

Study on Application of Large-Scale Aluminium Extruded Material (확장형 알루미늄 압출형재 적용에 관한 연구)

  • Lee, Jae-Ho;Moon, In-Chul;Se, Soo-Ho;Jang, Young-Bong
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.2672-2678
    • /
    • 2011
  • Carbody of rolling stock has been gradually changed as whole wood, steel frame with wood car body, whole steel car body with rivet and whole monocoque carbody with welding. And also mild steel has been used widely to material of structure, but usage of stainless and aluminium which have lightweight and high corrosion resistance is being increased lately. Structure is being commercialized to AED(All Extrusion Design),whole double skin with hollow excluded shape such as aluminium structure from SSD(Sheet Stringer Design), single skin consists of traditional frame and outside plat. Traditional aluminium carbody had many problems from reduced strength in welding combination section because car body is consist of small extruded material affected heat by welding. On this study, we proposed the plan to improve the body strength and quality with large-scale aluminium extruded material by minimizing welding concentration in combination section.

  • PDF

Effects of Heating Conditions in the Straightening of Sheet Metal Distortion (박판재 변형의 가열교정에서 가열면적의 영향)

  • Park, Jun-Hyoung;Kim, Jae-Woong;Kim, Ki-Chul;Jun, Joong-Hwan
    • Journal of Welding and Joining
    • /
    • v.26 no.4
    • /
    • pp.79-84
    • /
    • 2008
  • Use of sheet metal structure is increased in various fields such as automobile, aerospace and communication equipment industry. When this structure is welded, welding distortion is generated due to the non-uniformity of temperature distribution. Recently welding distortion becomes a matter of great importance in the structure manufacture industry because it deteriorates the product's quality by bringing about shape error. Accordingly many studies for solving the problems by controlling the welding distortion are being performed. However, it is difficult to remove all kinds of distortion by welding process, though various kinds of methods for reducing distortion are applied to production. Consequently, straightening process is operated if the high precision quality is requested after welding. The local heating method induces compression plastic deformation by thermal expansion in the heating stage and then leaves constriction of length direction in the cooling stage. Accordingly, in the case of sheet metal structure, straightening effect is expected by heating for the part of distortion. This study includes numerical analysis of straightening effect by the local heating method in distortion comes from production of welded sheet metal structure. Particularly straightening effect followed by dimensions of heating area is analyzed according to the numerical analysis. The numerical analysis is performed by constructing 3-dimensional finite element model for 0.4mm stainless steel-sheet metal. Results of this study confirm that straightening effect changes as heating area increases and the optimum value of heating area that proves the maximum straightening effect exists.

Evaluation of Material Properties in Austenite Stainless Steel Sheet with Scanning Acoustic Microscopy (초음파현미경을 이용한 오스테나이트 스테인레스강의 재료특성 평가)

  • Park, Tae-Sung;Kasuga, Yukio;Park, Ik-Keun;Kim, Kyoung-Suk;Miyasaka, Chiaki
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.267-275
    • /
    • 2012
  • Austenite stainless steel 304 has properties of high resistance to corrosion and temperature changes. Therefore, this material is widely used in various of industries. However, when the material is subjected to heating and cooling cycles the forming accuracy, for example, the right angle associated with a sharp bend such as corner is lost. This phenomenon is caused by the reversion of the deformation-induced martensite into austenite when the temperature in increased. This result in misfit of a structure or an assembly, and an increase in residual stress. Hence, it is important to understand this process. In this study, to evaluate the mechanical behavior of the deformation-induced martensite and reversed austenite, a scanning acoustic spectroscope including the capability of obtaining both phase and amplitude of the ultrasonic wave (i.e., the complex V(z) curve method) was used. Then, the velocities of the SAW propagating within the specimens made in different conditions were measured. The experimental differences of the SAW velocities obtained in this experiment were ranging from 2,750 m/s to 2,850 m/s, and the theoretical difference was 3.6% under the assumption that the SAW velocity was 2,800 m/s. The error became smaller as the martensite content was increased. Therefore, the SAW velocity may be a probe to estimate the marternsite content.

Experimental Study the on Hysteretic Characteristics of Rotational Friction Energy Dissipative Devices (회전 마찰형 제진장치의 이력특성에 대한 실험적 연구)

  • Park, Jin-Young;Han, Sang Whan;Moon, Ki-Hoon;Lee, Kang Seok;Kim, Hyung-Joon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.17 no.5
    • /
    • pp.227-235
    • /
    • 2013
  • Friction energy dissipative devices have been increasingly implemented as structural seismic damage protecting systems due to their excellent seismic energy dissipating capacity and high stiffness. This study develops rotational friction energy dissipative devices and verifies experimentally their cyclic response. Based on the understanding of the differences between the traditional linear-motion friction behavior and the rotational friction behavior, the configuration of the frictional surface was determined by investigating the characteristics of the micro-friction behavior. The friction surface suggested in this paper consists of brake-lining pads and stainless steel sheets and is normally stressed by high-strength bolts. Based upon these frictional characteristics of the selected interface, the rotational friction energy dissipative devices were developed. Bolt torque-bearing force tests, rotational friction tests of the suggested friction interfaces were carried out to identify their frictional behavior. Test results show that the bearing force is almost linearly proportional to the applied bolt torque and presents stable cyclic response regardless of the experimental parameters selected this testing program. Finally, cyclic tests of the rotational friction energy dissipative devices were performed to find out their structural characteristics and to confirm their stable cyclic response. The developed friction energy dissipative devices present very stable cyclic response and meet the requirements for displacement-dependent energy dissipative devices prescribed in ASCE/SEI 7-10.

Synthesis of TCO-less Solar Cell using Metal Mesh Type Electrode and its Photovoltaic Characteristics (금속 메쉬 전극을 이용한 TCO-less 광전변환소자 제작 및 광전변환 특성)

  • Park, Min-Woo;Sung, Youl-Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.2
    • /
    • pp.126-130
    • /
    • 2011
  • Transparent conductive oxide (TCO) is an important part in the construction of dye-sensitized solar cells (DSCs) because of its low sheet resistance, sufficient light transparent ability and high photoelectrical response as a porous photo-electrode material of DSCs. However, the use of TCO for the two DSC electrodes can result in significant cost increase for the less effective DSCs compared to Si based solar cell. Therefore, the replacement of TCO is required for the commercial production of DSCs. In this study, TCO electrodes are replaced by stainless steel mesh. The 3.44[%] efficiency of the prepared TCO-less DSCs sample was obtained.

Influence of Lap Weld Shapes on Shear Strength by Plasma Arc Welding of SUS 304L (플라즈마 아크 용접에 의한 SUS 304L Lap 용접부형상이 강도에 미치는 영향)

  • 문종현;윤동렬;김동철;이동우;장태원
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.129-130
    • /
    • 2004
  • The stainless steel sheet which is one of primary barrier components for membrane on LNG ship is ordinarily welded by either TIG or PAW. The weld shapes of acceptant tolerance for membrane construction are scripted by G.T.T.(Gaztransport & Technigaz)‘s rules such as penetration depth, weld throat and weld length etc. This paper presents relationship between weld metal shear strength and weld penetration formed with plasma arc welding. The results show penetration depth is not decisive factor on shear strength, but weld throat and length.

  • PDF

A Numerical Study on the Flow Fields in the Continuous Casting Mold with Electromagnetic Brake (EMBR이 적용된 연속주조 몰드 내부에서의 유동장 해석)

  • Ha M. Y.;Lee H. G.
    • Journal of computational fluids engineering
    • /
    • v.4 no.2
    • /
    • pp.47-56
    • /
    • 1999
  • We developed a computer program to simulate the flow field in the presence of electro-magnetic fields. The steady, two-dimensional conservation equations for mass and momentum were solved simultaneously with Maxwell equations for electro-magnetic fields. Using this program, a numerical analysis was carried out to analyze the fluid flow in the continuous casting mold with electromagnetic brake. The effects of magnetic fields size, nozzle angle and EMBR yoke position on the flow fields in the continuous casting were investigated in the present study. The flow fields with EMBR were compared with those without EMBR. We also investigated the distribution of tracer concentration as a function of time in order to calculate their residence time in the mold with EMBR. By controlling the flow fields properly using EMBR, we can prevent the direct flow impaction on the wall which can give a damage on the mold surface and reduce surface defects of stainless steel sheet products.

  • PDF

Effect of Surface Roughness, Thickness and Current Density on Surface Resistance of Electro-deposited Copper Layer

  • Kim, Y.M.;Cho, S.K.;Choi, Y.;Lee, J.Y.;Kim, M.
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2013.05a
    • /
    • pp.179-179
    • /
    • 2013
  • Surface resistance of electro-deposited copper with its thickness, current density and surface roughness was determined by using a 4-point probe analyzer. The copper was prepared electrochemically on 316 stainless steel substrate in copper sulfate solution at the condition of $1A/dm^2$, 298 K, and 6.5 cm-electrode distance. The surface resistance of the copper sheet in the range of $0.93-0.97{\Omega}$ increased with the copper thickness in the range of $21-70{\mu}m$. The surface resistance in the range of $0.963-1.009{\Omega}$ also increased with current density in the range of $0.5-2A/dm^2$. The increased surface resistances corresponded to 11% for thickness and 25% for current density, respectively.

  • PDF