• Title/Summary/Keyword: Stage-${\sqrt{Q}}$

Search Result 3, Processing Time 0.016 seconds

Methodology for segmentation of rating curve (수위-유량관계곡선식 구간분리 방법론 제안)

  • Hwang-Bo, Jong Gu
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.7
    • /
    • pp.557-563
    • /
    • 2022
  • The rating curve is required to convert measured stage into a discharge and is developed using the measurement. In the development of the rating curve, the segmentation position is determined by considering the hydraulic characteristic and channel shape, and subjective judgment of the Hydrographer may intervene in this process. The segmentation position is so important that it determines the overall form of the rating curve, and the incorrect segmentation can cause errors in the rating curve, especially in extrapolation. In order to develop an accurate rating curve with a small number of measurements, the sections must be divided by considering hydraulic characteristic such as the cross-sectional shape. In this study, hydraulic examination methods such as stage-mean velocity, stage-area, stage-${\sqrt{Q}}$ investigated and supplemented to eliminate subjectivity in segmental positioning. Appropriateness for the segmentation position was verify in consideration of the physical meaning of the rating curve index (c).

A Method of Rating Curve Adjustment (수위유량곡선보정방법에 대하여)

  • 박정근
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.18 no.2
    • /
    • pp.4116-4120
    • /
    • 1976
  • With the use of many rivers increased nearly to the capacity, the need for information concerning daily quantities of water and the total annual or seasonal runoff has became increased. A systematic record of the flow of a river is commonly made in terms of the mean daily discharge Since. a single observation of stage is converted into discharge by means of rating curve, it is essential that the stage discharge relations shall be accurately established. All rating curves have the looping effect due chiefly to channel storage and variation in surface slope. Loop rating curves are most characteristic on streams with somewhat flatter gradients and more constricted channels. The great majority of gauge readings are taken by unskilled observers once a day without any indication of whether the stage is rising or falling. Therefore, normal rating curves shall show one discharge for one gauge height, regardless of falling or rising stage. The above reasons call for the correction of the discharge measurements taken on either side of flood waves to the theoretical steady-state condition. The correction of the discharge measurement is to consider channel storage and variation in surface slope. (1) Channel storage As the surface elevation of a river rises, water is temporarily stored in the river channel. There fore, the actual discharge at the control section can be attained by substracting the rate of change of storage from the measured discharge. (2) Variation in surface slope From the Manning equation, the steady state discharge Q in a channel of given roughness and cross-section, is given as {{{{Q PROPTO SQRT { 1} }}}} When the slope is not equal, the actual discharge will be {{{{ { Q}_{r CDOT f } PROPTO SQRT { 1 +- TRIANGLE I} CDOT TRIANGLE I }}}} may be expressed in the form of {{{{ TRIANGLE I= { dh/dt} over {c } }}}} and the celerity is approximately equal to 1.3 times the mean watrr velocity. Therefore, The steady-state discharge can be estimated from the following equation. {{{{Q= { { Q}_{r CDOT f } } over { SQRT { (1 +- { A CDOT dh/dt} over {1.3 { Q}_{r CDOT f }I } )} } }}}} If a sufficient number of observations are available, an alternative procedure can be applied. A rating curve may be drawn as a median line through the uncorrected values. The values of {{{{ { 1} over {cI } }}}} can be yielded from the measured quantities of Qr$.$f and dh/dt by use of Eq. (7) and (8). From the 1/cI v. stage relationship, new vlues of 1/cI are obtained and inserted in Eq. (7) and (8) to yield the steady-state discharge Q. The new values of Q are then plotted against stage as the corrected steadystate curve.

  • PDF

Evaluation of the Parameters of Soil Potassium Supplying Power for Predicting Yield Response, K2O Uptake and Optiumum K2O Application Levels in Paddy Soils (수도(水稻)의 가리시비반응(加里施肥反応)과 시비량추정(施肥量推定)을 위한 가리공급력(加里供給力) 측정방법(測定方法) 평가(評価) -I. Q/I 관계(関係)에 의(依)한 가리(加里) 공급력측정(供給力測定)과 시비반응(施肥反応))

  • Park, Yang-Ho;An, Soo-Bong;Park, Chon-Suh
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.16 no.1
    • /
    • pp.42-49
    • /
    • 1983
  • In order to find out the possibility of predicting fertilizer K requirement from the K supplying capacity of soil, the relative K activity ratio, Kas/kai, the potential buffering capacity of $K^+$ ($PBC^k$ ; the liner regression coefficient) and its activity ratio ($AR^k_o$ ; $^{k+}$/${\sqrt{Ca^{+2}+Mg^{+2}}}$ in mol/l) at ${\delta}K$ = O, in the Q/I relationships of Beckett(1964), were determined for the soils before flooding and the samples taken at heading stage of transplanted rice in pot experiment. These parameters assumed as the K supplying capacity of soils were subjected for the investigation through correlation stady between themselves and other factors such as grain yield or the amounts of $K_2O$ uptake by rice plant at harvest. The results may be summarized as follows; 1. The potassium supplying power of the flooded soil was considered to be ruled by the amounts of exchangeable K before flooding, since there was little change in exchangeable K concentration from no-exchangeable K during the incubation periods of 67 days. 2. The $PBC^k$ values, in soils before flooding were 0.027, 0.014 and 0.009, where as the $AR^k_o{\times}10^{-3}$ values were 9.1, 7.6, and 15.4, respectively, in clay, loamy and sandy loam soils. 3. The $PBC^k$ values, determined in the soil samples taken at heading stage, varied little compared with the values of orignal soil, regardless of those different fertilizer treatments and textures, showing the possibility of using them as a factor for the improvement of soil to increase the efficiency of fertilizer K. 4. The significant yield responses to potassium fertilizer application were observed wherever the $AR^k_o$ values in soil at heading stage drop down to the original $AR^k_o$ values, regardless of any levels of fertilizer application. 5. The higher correlations between the gain yield or the amounts of $K_2O$ uptake and by the use of both soil factors of $PBC^k$ and $AR^k_o$ at heading stage were observed compared with the use of any single factor. 6. The Kas/Kai value in the soil, estimated prior to the experiment, had high possitive correlation with the $AR^k_o$ determined in the soil at heading stage and could be used as a soil factor for predicting potassium fertilizer requirement.

  • PDF