• Title/Summary/Keyword: Stachyose

Search Result 109, Processing Time 0.024 seconds

Physicochemical Properties of Traditional Chonggugjang Produced in Different Regions (전통청국장의 이화학적 특성)

  • Yoo, Seon-Mi;Choe, Jeong-Sook;Park, Hong-Ju;Hong, Sun-Pyo;Chang, Chang-Moon;Kim, Jin-Sook
    • Applied Biological Chemistry
    • /
    • v.41 no.5
    • /
    • pp.377-383
    • /
    • 1998
  • This study was undertaken to obtain the fundamental data for improving the quality of Korean traditional chonggugjang. To compare the physicochemical properties of traditional chonggugjang produced in different regions, sixty-seven chonggugjang samples collected at nine provinces were analyzed. The average moisture, protein, fat, non-fibrous carbohydrate, fiber, ash, amino nitrogen contents and pH value of collected chonggugjang samples were 55.0%, 17.6%, 3.3%, 13.3%, 4.9%, 5.8%, 0.23%, and 7.21, respectively. The average fatty acid compositions of chonggugjang were 53.8% for linoleic, 21.1% for oleic, 12.4% for palmitic, 9.0% for linolenic, and 3.7% for stearic acid. Traditional chonggugjang contained large amounts of glutamic acid, aspartic acid, and leucine, but less than 0.2% of cysteine and methionine. The average free sugar content was 3.3%, and the dominant free sugar among them were sucrose and galactose. The total average organic acid content of the samples analyzed was 883.0 mg% and citric, acetic, latic, malonic, succinic, formic, tartaric acid were also detected. The Hunter's color L, a, and b values of samples were 49.1, 7, 2, and hardness was $8.3\;kg/{\Phi}20\;mm$.

  • PDF

Effect of ion Chip and Yellow Soil on Growth and Physicochemical Characteristics of Soybean Sprouts (Ion Chip과 황토 처리가 콩나물의 생육 및 물리화학적 특성에 미치는 영향)

  • Kim In-Suk;Choi Sun-Young;Chung Mi-Ja;Kim Tae-Hoon;Sung Nak-Ju
    • The Korean Journal of Food And Nutrition
    • /
    • v.18 no.4
    • /
    • pp.316-324
    • /
    • 2005
  • The objectives of this study were to examine effect of ion chip and yellow soil on the growth and physicochemical characteristics of soybean sprouts. The weight and length increased rapidly in soybean sprouts cultivated for 4 days and then the increases slowed. Ascorbic acid increased rapidly after day 6 in soybean sprouts cultivated with ionized water (I.W), $1.0\%$ yellow soil in tap water (T.W+l.0) and $1.0\%$ yellow soil in ionized water (I.W+l.0). The detected content of minerals such as Mg, Ca, K and Fe in soybean sprouts was higher than other minerals. Iron content was the highest in soybean sprouts cultivated by I.W+1.0. The detected levels of glutamic acid in soybean sprouts cultivated for 4 days with ionized water was higher than in those grown with tap water. In all soybean sprouts, nucleotides such as UMP, CMP, AMP, Hx and soluble free sugars like sucrose, raffinose, stachylose were detected, and the levels of UMP were found to be the highest among nucleotides and sucrose among free sugars.

Texture Characteristics of Soybean-Curds Prepared with Different Coagulants and Compositions of Soybean-Curd Whey (응고제를 달리하여 제조한 두부의 텍스쳐 특성과 두부순물의 성분)

  • 이선미;황인경
    • Korean journal of food and cookery science
    • /
    • v.13 no.1
    • /
    • pp.78-85
    • /
    • 1997
  • To determine the optimum coagulants concentrations for preparing soybean-curds, the transmittance of soybean-curd whey using spectrophotometer has been measured. The textural properties of soybean-curds were examined by texture analyzer and sensory evaluations. The general components, oligosaccharides and amino acids in soybean-curd wheys were analyzed. Protein patterns of soybean-curd wheys comparing with soyflour and soymilk were investigated. By texture analyzer, hardness, cohesiveness, springiness, and gumminess of Cacl$_2$ soybean-curd, MgCl$_2$ soybean-curd were higher than those of CaSO$_4$ soybean-curd and GDL soybean-curd. In the sensory evaluations, CaSO$_4$ soybean-curds and GDL soybean-curds were smoother and moister than others. Glutamic acid and aspartic acid were the first two abundant amino acids in three kinds of soybean-curd wheys, but arginine was the most abundant amino acid in GDL soybean-curd whey. Total sugar content of soybean-curd wheys were about 12-13 g/l, and the main sugars among 5 kinds of sugars were sucrose and raffinose. Electrophoresis using SDS-PAGE showed that glycinin and P-conglycinin, the main proteins of soybean appeared in soy flour and soymilk, and only low molecular weight subunits appeared in soybean-curd wheys.

  • PDF

Analysis of Nutrient Content by Digestion Phase of Legumes using an In Vitro Digestion Model (In Vitro Digestion Model을 활용한 두류 소화 단계별 영양성분 변화 분석)

  • Da Bin Lee;Kyeong A Jang;In Seon Hwang;Min Sook Kang;Mi-Kyung Seo;Haeng Ran Kim;Seon Mi Yoo
    • The Korean Journal of Food And Nutrition
    • /
    • v.36 no.5
    • /
    • pp.368-378
    • /
    • 2023
  • Changes in contents of free sugars, amino acids, and fatty acids of legumes were analyzed for each phase of in vitro digestion. In addition, contents of resistant starch in raw and digested pulses were compared. Soybeans, kidney beans, cowpeas, and chickpeas were analyzed. An in vitro digestion model was used to analyze contents of nutrients using LC-MS and GC-MS. Stachyose in kidneybean, cowpea, and chickpea increased as the digestion phase progressed. In four types of legumes, raffinose slightly decreased or showed no significant difference between the Oral phase and the BBMV phase. Content of glucose, a monosaccharide, increased during the BBMV phase. During the digestion phase, levels of free amino acids and free fatty acids also increased. Content of resistant starch was reduced compared to that in the raw material. It was 0.01g/100 g food in soybean, 1.06 g/100 g food in red kidney bean, 0.77g/ 100g food in cowpea, and 0.76 g/100 g food in chickpea. It was confirmed that nutrients in the in vitro digestion model were liberated at each digestion phase with changes in the content of resistant starch. These results are expected to be used as fundamental data for obtaining bioavailability of nutrients.

Characterization of ${\alpha}$-Galactosidase and ${\beta}$-Glucosidase by Weissella cibaria (Weissella cibaria가 생산하는${\alpha}$-Galactosidase 및 ${\beta}$-Glucosidase의 특성)

  • Hong, Sung-Wook;You, Lae-Kyun;Jung, Byung-Moon;Kim, Wan-Sik;Chung, Kun-Sub
    • Microbiology and Biotechnology Letters
    • /
    • v.37 no.3
    • /
    • pp.204-212
    • /
    • 2009
  • A strain producing ${\alpha}$-galactosidase and ${\beta}$-glucosidase was isolated from Kimchi. The isolated strain was identified as Weissella cibaria by 16S rDNA analysis and designated as Weissella cibaria K-M1-4. The enzyme activity of ${\alpha}$-galactosidase and ${\beta}$-glucosidase reached the maximum in the soy medium at $37^{\circ}C$ for 24 hr. The enzymes were purified by ethanol fractionation, DEAE sepharose fast flow, and sephacryl S-100HR column chromatography. ${\alpha}$-Galactosidase specific activity was shown by 576 Units/mg protein and the yield was 3.5% of the total activity of crude extracts. ${\beta}$-glucosidase specific activity was shown by 480 Units/mg protein and the yield was 2.9% of the total activity of crude extracts. The optimum temperature for ${\alpha}$-galactosidase was $60^{\circ}C$ and 43% of its original activity remained when it was treated at $80^{\circ}C$ for 30 min. For ${\alpha}$-galactosidase shows the optimum pH of 8.0 and is fairly stable between pH5.0 and pH9.0. The enzyme activity was increased in the presence of $Fe^{2+}$ and $Cu^{2+}$. The value of Km and Vmax for the enzyme were 0.98 mM and $1.81{\mu}$mole/min, respectively. The ${\beta}$-glucosidase has the optimum temperature of $50^{\circ}C$ and 46% of its original activity remained when it was treated at $80^{\circ}C$ for 30min. Its optimum pH of 7.0 and is fairly stable between pH5.0 and pH9.0. The enzyme activity was increased in the presence of $Fe^{2+},\;Co^{2+}$ and $Cu^{2+}$. The value of Km and Vmax for the enzyme were 1.24 mM and $6.81{\mu}$mole/min, respectively.

Identification and Characterization of Lactobacillus salivarius subsp. salivarius from Korean Feces

  • Bae, Hyoung-Churl
    • Proceedings of the Korean Society for Food Science of Animal Resources Conference
    • /
    • 2004.05a
    • /
    • pp.89-119
    • /
    • 2004
  • This study was conducted to isolate lactobacilli having probiotic characteristics to be used as health adjuncts with fermented milk products. Acid tolerant strains were selected in Lactobacilli MRS broth adjusted to pH 4.0 from 80 healthy persons (infants, children and adults). And bile tolerant strains were examined in Lactobacilli MRS broth in which 1.0% bile salt was added. By estimation above characteristics, the strains No. 27, which was isolated from adult feces, was selected and identified as Lactobacillus salivarius subsp. salivarius based on carbohydrate fermentation and 16S rDNA sequencing. It was used as a probiotic strain in fermented milk products. The pH of fermented milk decreased from pH 6.7 to 5.0 and titratable acidity increased from 0.3% to 1.0% by L. salivarius subsp. salivarius (isolation strain 20, 35, and 37), when incubated for 36 h at $37^{\circ}C$. The number of viable cell counts of fermented milk was maximized at this incubation condition. The SDS-PAGE evidenced no significant change of casein but distinct changes of whey protein were observed by isolated L. salivarius subsp. salivarius for titratable acidity being incubated by $0.9{\sim}1.0%$ at $37^{\circ}C$. All of the strains produced 83.43 to 131.96 mM of lactic acid and 5.39 to 26.85 mM of isobutyric acid in fermented products. The in vitro culture experiment was performed to evaluate ability to reduce cholesterol levels and antimicrobial activity in the growth medium. The selected L. salivarius subsp. salivarius reduced $23{\sim}38%$ of cholesterol content in lactobacilli MRS broth during bacterial growth for 24 hours at $37^{\circ}C$. All of the isolated L. salivarius subsp. salivarius had an excellent antibacterial activity with $15{\sim}25$ mm of inhibition zone to E. coli KCTC1039, S. enteritidis KCCM3313, S. typhimurium M-15, and S. typhimurium KCCM40253 when its pH had not been adjusted. Also, all of the isolated L. salivarius subsp. salivarius had partial inhibition zone to E. coli KCTC1039, E. coli KCTC0115 and S. enteritidis KCCM3313 when it had been adjusted to pH 5.7. The selected strains were determined to have resistances of twelve antibiotic. Strains 27 and 35 among the L. salivarius subsp. salivarius showed the highest resistance to the antibiotics. Purified ${\alpha}$-galactosidase was obtained by DEAE-Sephadex A-50 ion exchange chromatography, Mono-Q ion exchange chromatography and HPLC column chromatography from L. salivarius subsp. salivarius 27. The specific activity of the purified enzyme was 8,994 units/mg protein, representing an 17.09 folds purification of the original cell crude extract. The molecular weight of enzyme was identified about 53,000 dalton by 12% SDS-PAGE. Optimal temperature and pH for activity of this enzyme were $40^{\circ}C$ and 7.0 respectively. The enzyme was found to be stable between 25 and $50^{\circ}C$. ${\alpha}$-galactosidase activity was lost rapidly below pH 5.0 and above pH 9.0. This enzyme was liberated galactose from melibiose, raffinose, and stachyose, and also the hydrolysis rate of substrate was compound by HPLC. These results indicated that some of the L. salivarius subsp. salivarius (strain 27 and 35) are considered as effective probiotic strains with a potential for industrial applications, but the further study is needed to establish their use as probiotics in vivo.

  • PDF

Improvement of Meju Preparation Method for the Production of Korean Traditional kanjang (Soy Sauce) (한국 재래식 간장의 품질 향상을 위한 메주 제조법 개선)

  • Im, Moo-Hyeog;Choi, Jong-Dong;Chung, Hyun-Chae;Lee, Seon-Ho;Lee, Coon-Woo;Choi, Cheong;Choi, Kwang-Soo
    • Korean Journal of Food Science and Technology
    • /
    • v.30 no.3
    • /
    • pp.608-614
    • /
    • 1998
  • In order to establish the scientific foundations for the production of Korean traditional kanjang (soy sauce) in a semi-pilot scale, meju preparation and kanjang mashing methods were investigated. Two types of meju, one that was prepared by conventional method (CM-meju) and the other that prepared by modified conventional method (MCM-meju), were made and compared their characteristics. The former made of cooked and crushed soybean with a brick shape was fermented at $15{\sim}20^{\circ}C\;and\;40{\sim}50%$ relative humidity (RH) for 30 days in koji room and the latter was fermented at $25{\sim}30^{\circ}C\;and\;80{\sim}90%$ RH seemingly being optimum for the growth of meju-organisms for the same period. The quality of MCM-meju as a raw material for the kanjang preparation was considered to be superior to that of CM-meju as the higher soluble nitrogen and total free amino acids content, the major factor for the evaluation of the quality of meju, were found in the former although the higher total nitrogen content and lower % weight loss were observed in the latter during meju preparation process. The quality of MCM-kanjang with higher total nitrogen, free amino acids, free sugars and the lower residual nitrogen content in cake after separation of kanjang was also found to be superior to that of CM-kanjang in sensory evaluation results.

  • PDF

Optimization for the Process of Ethanol of Persimmon Leaf(Diospyros kaki L. folium) using Response Surface Methodology (반응표면분석법을 이용한 감잎(Diospyros kaki L. folium) 에탄올 추출물의 최적화)

  • Bae, Du-Kyung;Choi, Hee-Jin;Son, Jun-Ho;Park, Mu-Hee;Bae, Jong-Ho;An, Bong-Jeon;Bae, Man-Jong;Choi, Cheong
    • Applied Biological Chemistry
    • /
    • v.43 no.3
    • /
    • pp.218-224
    • /
    • 2000
  • The efforts were made to optimite ethanol extraction from persimmon leaf with the time of extraction$(1.5{\sim}2.5\;hrs)$, the temperature of extraction$(70{\sim}90^{\circ}C)$, and the concentration of ethanol$(0{\sim}40%)$ as three primary variables together with several functional characteristics of persimmon leaf as reaction variables. The conditions of extraction was best fitted by using response surface methodology through the center synthesis plan, and the optimal conditions of extraction were established. The contents of soluble solid and soluble tannin went up as the concentration of ethanol went up and the temperature of extraction went down, and the turbidity went down as the concentration of ethanol went down. Electron donation ability was hardly affected by the extraction temperature and had the tendency to go up as the concentration of ethanol went up. The inhibitory activity of xanthine oxidase(XOase) had the tendency to go up as both the concentration of ethanol and the temperature of extraction went up. The inhibitory activity of angiotensin converting enzyme(ACE), the significance of which still was not recognized, showed the maximum when the concentration of ethanol was 27%. In result, the optimal conditions of extraction was the extraction time of two hours, the extraction temperature of $75{\sim}81^{\circ}C$, and the ethanol concentration of $33{\sim}35%$.

  • PDF

Chemical Changes of Meju made with Barly Bran Using Fermentation (보리등겨로 제조한 메주의 발효기간에 따른 각종 성분 변화)

  • Kwon, O-Jun;Choi, Ung-Kyu;Lee, Eun-Jeong;Cho, Young-Je;Cha, Won-Senp;Son, Dong-Hwa;Chung, Yung-Gun
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.5
    • /
    • pp.1135-1141
    • /
    • 2000
  • For investigation of new utilization as jang-products, Meju was prepared using barely bran. As barley meju was fermented, change of pH was $5.2{\sim}5.6$, it was indistinguishable change. L-value of color was changed from 46.9 to 60.3, that meant it was getting moe dark. The counts of aerobic bacteria were $4.8{\times}10^7{\sim}5.6{\times}10^9$ CFU/g, it was extraordinarily increased during fermentation. Counts of Yeast, molds, and bacteria were $9.1{\times}10^6{\sim}5.0{\times}10^8$ CFU/g, $8.3{\times}10^5{\sim}6.9{\times}10^7$, and $2.0{\times}10^2{\sim}4.5{\times}10^6$ CFU/g, respectively. Crude ash content was $3146.0{\sim}7147.4$ mg%. The level of K was the highest in quantity among the crude ash in barely meju. 7 free sugars(i.e., raffnose, stachyose, inositol, fructose, glucose, arabinose, and maltose), 3 volatile organic acid(i.e., acetic acid, propionic acid, and butyric acid) and 4 non-volatile organic acid(i.e., fumaric acid, ${\alpha}-ketoglutaric$ acid, malic acid, and citric acid) were detected. The content of free amino acid was $596.3{\sim}1580.8$ mg%. Glutamic acid was most abundant component among the amino acids, 2nd abundant component was alanine, it's content was $79.9{\sim}165.3$ mg%, 3rd abundant component was leucine, it's count was $41.7{\sim}161.6$ mg%. Finally, essential amino acid content was revealed $33.2{\sim}40.38%$.

  • PDF