• Title/Summary/Keyword: Stable Flow Regime

Search Result 27, Processing Time 0.022 seconds

Mathematical Properties of the Differential Pom-Pom Model

  • Kwon, Youngdon
    • Macromolecular Research
    • /
    • v.9 no.3
    • /
    • pp.164-170
    • /
    • 2001
  • Recently in order to describe the complex rheological behavior of polymer melts with long side branches like low density polyethylene, new constitutive equations called the pom-pom equations have been derived by McLeish and Larson on the basis of the reptation dynamics with simplified branch structure taken into account. In this study mathematical stability analysis under short and high frequency wave disturbances has been performed for the simplified differential version of these constitutive equations. It is proved that they are globally Hadamard stable except for the case of maximum constant backbone stretch (λ = q) with arm withdrawal s$\_$c/ neglected, as long as the orientation tensor remains positive definite or the smooth strain history in the now is previously given. However this model is dissipative unstable, since the steady shear How curves exhibit non-monotonic dependence on shear rate. This type of instability corresponds to the nonlinear instability in simple shear flow under finite amplitude disturbances. Additionally in the flow regime of creep shear flow where the applied constant shear stress exceeds the maximum achievable value in the steady now curves, the constitutive equations will possibly violate the positive definiteness of the orientation tensor and thus become Hadamard unstable.

  • PDF

Combustion Performance Test of Syngas Gas in a Model Gas Turbine Combustor - Part 1 : Flame Stability (모델 가스터빈 연소기에서 합성가스 연소성능시험 - Part 1 : 화염안정성)

  • Lee, Min Chul;Joo, Seong Pil;Yoon, Jisu;Yoon, Youngbin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.8
    • /
    • pp.632-638
    • /
    • 2013
  • This paper describes on the flame stability and combustion instability of coal derived synthetic gas especially for gases of Buggenum IGCC in Netherlands and Taean IGCC in Korea. These combustion characteristics were observed by conducting ambient-pressure elevated-temperature combustion tests in GE7EA model combustor when varying heat input and nitrogen dilution ratio. Flame stability map is plotted according to the flame structure by dividing all regimes into six, and only regime I and II are identified to be stable. Both syngases of Taean and Buggenum with nitrogen integration corresponds to regime II in which syngas burnt stably and flame coupled with outer recirculation flow. Stable regime of Buggenum is larger than that of Taean when considering only $H_2$/CO ratio due to higher content of hydrogen. However, when considering nitrogen dilution, syngas of Taean is burnt more stably than that of Buggenum since more nitrogen in Buggenum has negative effect on the stability of flame.

Channel-forming Discharge Evaluation for Rivers with High Coefficients of River Regime (하상계수가 큰 하천의 하도형성유량 산정)

  • Ji, Un;Jang, Eun Kyung;Yeo, Woon Kwang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4B
    • /
    • pp.361-367
    • /
    • 2011
  • The channel-forming discharge, which is a standard and single flow for the river maintenance and restoration project, should be estimated necessarily in the stable channel design. It is difficult to produce the specific pattern for the channel-forming discharge in the domestic rivers due to the insufficient researches and case studies. Also, it is improper to adopt the foreign cases for the domestic rivers and streams which have the high coefficients of river regime. Therefore, the channel-forming discharge possible to use for rivers with high coefficients of river regime is suggested in this study through analyzing the bankfull, specified recurrence interval, and effective discharges of Mangyeong River, Cheongmi Stream, and Hampyeong Stream for the abandoned channel restoration project. The bankfull discharge was calculated with geometric data using the HEC-RAS modeling and the flow, bed materials, and sediment data for the study reaches were used to estimate the specified recurrence interval and effective discharges. As a result for calculating the channel-forming discharge, the effective discharge was greater than the bankfull discharge in the river with high coefficient of river regime and the effective discharge was greater than the bankfull and there was no correlation between the coefficient of river regime and the characteristics of the specified recurrence interval discharges.

A Dispersion and Characteristic Analysis for the One-dimensional Two-fluid Mode with Momentum Flux Parameters

  • Song, Jin-Ho;Kim, H.D.
    • Nuclear Engineering and Technology
    • /
    • v.33 no.4
    • /
    • pp.409-422
    • /
    • 2001
  • The dynamic character of a system of the governing differential equations for the one- dimensional two-fluid model, where the momentum flux parameters are employed to consider the velocity and void fraction distribution in a flow channel, is investigated. In response to a perturbation in the form of a'traveling wave, a linear stability analysis is peformed for the governing differential equations. The expression for the growth factor as a function of wave number and various flow parameters is analytically derived. It provides the necessary and sufficient conditions for the stability of the one-dimensional two-fluid model in terms of momentum flux parameters. It is demonstrated that the one-dimensional two-fluid model employing the physical momentum flux parameters for the whole range of dispersed flow regime, which are determined from the simplified velocity and void fraction profiles constructed from the available experimental data and $C_{o}$ correlation, is stable to the linear perturbations in all wave-lengths. As the basic form of the governing differential equations for the conventional one-dimensional two-fluid model is mathematically ill posed, it is suggested that the velocity and void distributions should be properly accounted for in the one-dimensional two-fluid model by use of momentum flux parameters.s.

  • PDF

Recent results on the analysis of viscoelastic constitutive equations

  • Kwon, Youngdon
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.1
    • /
    • pp.33-45
    • /
    • 2002
  • Recent results obtained for the port-pom model and the constitutive equations with time-strain separability are examined. The time-strain separability in viscoelastic systems Is not a rule derived from fundamental principles but merely a hypothesis based on experimental phenomena, stress relaxation at long times. The violation of separability in the short-time response just after a step strain is also well understood (Archer, 1999). In constitutive modeling, time-strain separability has been extensively employed because of its theoretical simplicity and practical convenience. Here we present a simple analysis that verifies this hypothesis inevitably incurs mathematical inconsistency in the viewpoint of stability. Employing an asymptotic analysis, we show that both differential and integral constitutive equations based on time-strain separability are either Hadamard-type unstable or dissipative unstable. The conclusion drawn in this study is shown to be applicable to the Doi-Edwards model (with independent alignment approximation). Hence, the Hadamardtype instability of the Doi-Edwards model results from the time-strain separability in its formulation, and its remedy may lie in the transition mechanism from Rouse to reptational relaxation supposed by Doi and Edwards. Recently in order to describe the complex rheological behavior of polymer melts with long side branches like low density polyethylene, new constitutive equations called the port-pom equations have been derived in the integral/differential form and also in the simplifled differential type by McLeish and carson on the basis of the reptation dynamics with simplifled branch structure taken into account. In this study mathematical stability analysis under short and high frequency wave disturbances has been performed for these constitutive equations. It is proved that the differential model is globally Hadamard stable, and the integral model seems stable, as long as the orientation tensor remains positive definite or the smooth strain history in the flow is previously given. However cautious attention has to be paid when one employs the simplified version of the constitutive equations without arm withdrawal, since neglecting the arm withdrawal immediately yields Hadamard instability. In the flow regime of creep shear flow where the applied constant shear stress exceeds the maximum achievable value in the steady flow curves, the constitutive equations exhibit severe instability that the solution possesses strong discontinuity at the moment of change of chain dynamics mechanisms.

A COMPUTATIONAL ANALYSIS FOR OUTLET SHAPE DESIGN TO SUPPRESS FLOW RECIRCULATION IN A ROTATING-DISK CVD REACTOR (회전원판형 CVD 장치의 유동 재순환을 억제하는 출구부 형상 설계를 위한 전산해석)

  • Park, J.J.;Kim, K.;Kwak, H.S.
    • Journal of computational fluids engineering
    • /
    • v.18 no.4
    • /
    • pp.74-81
    • /
    • 2013
  • A numerical design analysis is conducted to search for an optimal shape of outlet in a rotating-disk CVD reactor. The goal is to suppress flow recirculation that has been found in a reactor having a sudden expansion of flow passage outside of the rotating disk. In order to streamline gas flow, the sidewall at which the flow in the Ekman layer is impinged, is tilted. The axisymmetric laminar flow and heat transfer in the reactor are simulated using the incompressible ideal gas model. For the conventional vertical sidewall, the flow recirculation forming in the corner region could be expanded into the interior to distort the upstream flow. The numerical results show that this unfavorable phenomenon inducing back flow could be dramatically suppressed by tilting the sidewall at a certain range of angle. The assessment of deviation in deposition rate based on the characteristic isotherm illustrates that the sidewall tilting may expand the domain of stable plug-like flow regime toward higher pressure. A physical interpretation is attempted to explain the mechanism to suppress flow recirculation.

Gas Hydrate BSR-derived Heat Flow Variations on the South Shetland Continental Margin, Antarctic Peninsula (가스수화물 BSR을 이용한 남극반도 남쉐틀랜드 대륙주변부의 지열류량 변화)

  • Jin, Young-Keun;Nam, Sang-Heon;Kim, Yea-Dong;Kim, Kyu-Jung;Lee, Joo-Han
    • Ocean and Polar Research
    • /
    • v.25 no.2
    • /
    • pp.201-211
    • /
    • 2003
  • Bottom simulating reflectors (BSR), representing the base of the gas hydrate stability field, are widespread on the South Shetland continental margin (SSM), Antarctic Peninsula. With the phase diagram fur the gas hydrate stability field, heat flow can be derived from the BSR depth beneath the seafloor determined on multichannel seismic profiles. The heat flow values in the study area range from $50mW/m^2$ to $85mW/m^2$, averaging to $65mW/m^2$. Small deviation from the average heat flow values suggests that heat flow regime of the study area is relatively stable. The landward decrease of heat flow from the South Shetland Trench to the continental shelf would be attributed to the landward thickening of the accretionary prism and the upward advection of heat associated with fluid expulsion. The continental slope 1500m to 3000m deep, where BSRs are most distinguished in the SSM, shows relatively large variation of heat flow possibly due to complex tectonic activities in the study area. The local high heat flow anomalies observed along the slope may be caused by heat transport mechanisms along a NW-SE trending large-scale fault.

Experimental investigation of two-phase flow and wall heat transfer during reflood of single rod heater (단일 가열봉의 재관수 시 2상유동 및 벽면 열전달에 관한 실험적 연구)

  • Park, Youngjae;Kim, Hyungdae
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.3
    • /
    • pp.23-34
    • /
    • 2020
  • Two-phase flow and heat transfer characteristics during the reflood phase of a single heated rod in the KHU reflood experimental facility were examined. Two-phase flow behavior during the reflooding experiment was carefully visualized along with transient temperature measurement at a point inside the heated rod. By numerically solving one-dimensional inverse heat conduction equation using the measured temperature data, time-resolved wall heat flux and temperature histories at the interface of the heated rod and coolant were obtained. Once water coolant was injected into the test section from the bottom to reflood the heated rod of >700℃, vast vapor bubbles and droplets were generated near the reflood front and dispersed flow film boiling consisted of continuous vapor flow and tiny liquid droplets appeared in the upper part. Following the dispersed flow film boiling, inverted annular/slug/churn flow film boiling regimes were sequentially observed and the wall temperature gradually decreased. When so-called minimum film boiling temperature reached, the stable vapor film between the heated rod and coolant was suddenly collapsed, resulting in the quenching transition from film boiling into nucleate boiling. The moving speed of the quench front measured in the present study showed a good agreement with prediction by a correlation in literature. The obtained results revealed that typical two-phase flow and heat transfer behaviors during the reflood phase of overheated fuel rods in light water nuclear reactors are well reproduced in the KHU facility. Thus, the verified reflood experimental facility can be used to explore the effects of other affecting parameters, such as CRUD, on the reflood heat transfer behaviors in practical nuclear reactors.

Effect of Boosted Intake Pressure on Stratified Combustion of a Gasoline Direct Injection Engine (가솔린 직접분사 엔진의 흡기과급이 성층화 연소에 미치는 영향)

  • 조남효;박형철;김미로
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.48-55
    • /
    • 2003
  • The effects of pressure charge on combustion stability and emissions have been analyzed using a GDI single cylinder engine. A late injection mode of stratified condition at the air-fuel ratio of 40:1 for 1200∼2400 rpm was tested while the boosted pressure ratio was increased up to 1.5:1. In-cylinder CFD analysis was also performed for better understanding of in-cylinder flow and fuel spray behavior. With a higher boosted pressure ratio the IMEP was increased greatly due to the increased engine load, and the ISFC was improved by more than 10% at all engine speeds. The regime of stable stratified combustion was extended to a higher engine speed, but the spark ignition angle had to be more advanced for stable combustion. The emissions of ISHC and ISNOx did not show a particular trend for the increased engine speed but a general trend of lower ISHC and higher ISNOx for a gasoline engine.

Numerical Study of Passive Control with Slotted Blading in Highly Loaded Compressor Cascade at Low Mach Number

  • Ramzi, Mdouki;Bois, Gerard;Abderrahmane, Gahmousse
    • International Journal of Fluid Machinery and Systems
    • /
    • v.4 no.1
    • /
    • pp.97-103
    • /
    • 2011
  • With the aim to increase blade loadings and stable operating range in highly loaded compressors, this article has been conducted to explore, through a numerical parametric study, the potential of passive control using slotted bladings in cascade configurations. The objective of this numerical investigation is to analyze the influence of location, width and slope of the slots and therefore identify the optimal configuration. The approach is based on two dimensional cascade geometry, low speed regime, steady state and turbulent RANS model. The results show the efficiency of this passive technique to delay separation and enhance aerodynamic performances of the compressor cascade. A maximum of 28.3% reduction in loss coefficient have been reached, the flow turning is increased with approximately $5^0$ and high loading over a wide range of angle of attack have been obtained for the optimized control parameter.