• Title/Summary/Keyword: Stabilizer thickness

Search Result 33, Processing Time 0.018 seconds

Characteristics of Byproduct After NaBH4 Hydrolysis Reaction Using Unsupported Catalyst (비담지 촉매를 이용한 NaBH4 가수분해반응에서 부산물의 특성)

  • Lee, Hye-Ri;Park, Dae-Han;Ju, Won;Na, Il-Chai;Park, Kwon-Pil
    • Korean Chemical Engineering Research
    • /
    • v.55 no.1
    • /
    • pp.13-18
    • /
    • 2017
  • Sodium borohydride, $NaBH_4$, shows a number of advantages as hydrogen source for UAV PEMFC (Unmaned Aerial Vehicle Proton Exchange Membrane Fuel Cells). In order to use for UAV, the weight and volume of byproduct should be small after $NaBH_4$ hydrolysis reaction. Therefore, the weight and volume of byproduct were studied after $NaBH_4$ hydrolysis reaction using unsupported catalyst. The effect of catalyst type, concentration of $NaBH_4$, concentration of NaOH and thickness of catalyst pack on the weight and volume of byproduct were studied. Most of byproduct was $NaB(OH)_4$ and superficial volume of byproduct increased due to foam evolved from byproduct. The weight and volume of byproduct were not affected by concentration of NaOH used stabilizer. The weight of byproduct decreased as concentration of $NaBH_4$ solution increased, but maximum volume of byproduct obtained at 23 wt% of $NaBH_4$. Suitable defoaming agent reduced the volume of byproduct.

Development of Oxo-biodegradable Transparent Bio Films Using Biomass and Biodegradable Catalyst (바이오매스 및 생분해 촉매제를 이용한 산화생분해 투명 바이오 필름 개발)

  • You, Young-Sun;Kim, Young-Tae;Park, Dae-Sung;Choi, Sung-Wook
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.133-139
    • /
    • 2017
  • Bio-based plastics containing the biomass content higher than 25 wt% have been considered as environment-friendly materials due to their effects on the reduction in the $CO_2$ emission and petroleum consumption as well as biodegradability after use. In this study, poly vinyl chloride, plant-derived plasticizers, by adding a biodegradable catalyst was observed a change in the biodegradability and physical properties. To produce the oxidative decomposition transparent bio film, which is broken down in the initial percent elongation and physical properties such as tensile strength, it was to test the safety of the product as a food packaging material. Poly vinyl chloride, primary plasticizer, secondary plasticizer, anti fogging agent, the combined stabilizer were mixed in a high speed mixer, then extruded using an extrusion molding machine, after cooling, winding, to produce a oxidative decomposition transparent bio film and the control film, with a thickness of $12{\mu}m$ through winder role. Mechanical properties tensile strength, elongation, and the maximum load elongation and biodegradation test. Transparent bio film produced by biodegradation catalyst is compared with the control film. Tensile strength and elongation of films were found to be no significant difference. Further, as a result of the biodegradation test for 45 days based on the ASTM D6954-04 method, biodegrability of film is 61.4%.

Controll over the Au@Ag Core-shell Nanoparticle 2D Patterns via Diblock Copolymer Inverse Micelle Templates and Investigation of the Surface Plasmon Based Optical Property (이중블록공중합체 역마이셀 주형을 이용한 Au@Ag 코어-쉘 나노입자 2차원 패턴 제어 및 표면 플라즈몬 기반 광학적 특성 연구)

  • Yoon, Min Ji;Kim, Jihyeon;Jang, Yoon Hee;Lee, Ji-Eun;Chung, Kyungwha;Quan, Li Na;Kim, Dong Ha
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.5
    • /
    • pp.618-624
    • /
    • 2013
  • We demonstrated unique inter- and intra-plasmonic coupling effects in bimetallic Au@Ag core-shell NP arrays which are regularly or randomly arranged on self-assembled block copolymer (BCP) inverse micelle monolayers. Polyvinylpyrrolidone (PVP)-stabilized Au@Ag core-shell NP arrays in regular or disordered configuration were incorporated and assembled on reconstructed PS-b-P4VP inverse micelle templates through two types of processes. The intensively enhanced LSPR coupling properties of individual and assembled Au@Ag NPs were evaluated by UV-visible spectroscopy in terms of the type of ligand stabilizer, coupling between Au and Ag, thickness of Ag shell, and type of array configuration. Finally, Au@Ag core-shell NP arrays were employed as active substrates for surface enhanced Raman spectroscopy (SERS) and a significantly enhanced signal enhancement was observed in accordance with the coupling intensity of Au@Ag NPs patterns.