• Title/Summary/Keyword: Stabilized Chlorine Dioxide

Search Result 4, Processing Time 0.023 seconds

A study on the characteristics of the components of stabilized chlorine dioxide by UV method (UV법에 의한 안정화 이산화염소 원액 성분 특성에 관한 연구)

  • Kim, Ho-Sun;An, Chang-Jin;Yoon, Je-Yong;Lee, Sang-Duk
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.2
    • /
    • pp.105-111
    • /
    • 1997
  • Chlorine dioxide is being used to control THMs formation or taste & odor in water treatment plant. Recently, some operators or academic circles doubted the effectiveness of stabilized chlorine dioxide which is presumed as a liquid form of chlorine dioxide. In this study, we investigated components which consist of stabilized chlorine dioxide in terms of chlorine dioxide and chlorite. Two analytical methods used in this study are UV method and Iodometric method. Iodometric method is recommended by Korean EPA to check the purity of stabilized chlorine dioxide. The samples of stabilized chlorine dioxide from four water treatments were investigated and compared with that produced from chlorine dioxide generator on-site. This study demonstrated that the component of stabilized chlorine dioxide was overwhelmingly chlorite (${ClO_2}^-$) not chlorine dioxide ($ClO_2$) by UV method. It was also proved that Iodometric method (2nd method) recommended by Korean EPA could not differentiate between $ClO_2$ and ${ClO_2}^-$. Iodometric method (2nd method) recommended by Korean EPA should be revised accordingly to measure chlorine dioxide properly.

  • PDF

Analysis of the Contents in Stabilized Chlorine Dioxide (안정화 이산화염소의 성분분석)

  • Shin, Ho-Sang;Oh-Shin, Yun-Suk
    • Analytical Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.403-407
    • /
    • 1999
  • A method for detecting chlorine dioxide in drinking water was developed by the modified iodometric titration. This method requires prior removal of interfering chemicals such as chlorine and/or other oxidants: the interferents are removed by $N_2$ purging. Chlorite and chlorate were successfully quantified by the ion chromatography-conductivity detection. Stabilized chlorine dioxide that is commercially available contained only traces of chlorine dioxide (0.01-0.09%). In reality, its main component is chlorite.

  • PDF

Microscopic Study of Decomposition-Inhibition in Stabilized $ClO_2$ Gas in Skeletal Muscle of Rat (흰쥐 골격근에서 안정화 이산화염소(Stabilized $ClO_2$)의 부패억제에 관한 현미경적 연구)

  • Hwang, Kyu-Sung;Jeong, Moon-Jin;Jeong, Soon-Jeong;Ahn, Yong-Soon;Lim, Do-Seon
    • Applied Microscopy
    • /
    • v.41 no.4
    • /
    • pp.277-284
    • /
    • 2011
  • This study was conducted to determine the antiseptic effect of stabilized chlorine dioxide (S-$ClO_2$) on muscle tissue of rats. Skeletal muscle of 8-week old Sprague-Dawley rats was used. Light and transmission electron microscopic findings were observed in the control group, which was not treated with stabilized chlorine dioxide, and in the experimental group, which was treated with a stabilized chlorine dioxide powder in aqueous solution. According to the LM and TEM observations, the day 1 control group showed the initiation of endomysium collapse resulting in an unclear boundary of muscle fibers, and partial collapse of the mitochondrial membranes. All endomysium had collapsed, and bacteria were observed among muscle fibers in the day 2 and later groups. Shapes of muscles were not distinguishable in day 3 or later groups. In contrast, the day 1 and 3 experimental groups revealed detailed structure of typical muscles, but partial collapse of the mitochondrial membranes was observed in the day 3 and later groups. Subsequently, connective tissues collapsed and structures in the shape of concentric circles were observed. In summary, the day 1 control group showed the initial collapse of tissues, and shapes were not distinguishable in the day 3 and later groups because most of the tissues had collapsed. In contrast, the day 3 experimental group showed partial collapse, but the overall shapes of muscles were maintained as time went on, confirming the antiseptic effect of stabilized chlorine dioxide on muscles.

In Vitro Hemolysis and Methemoglobin Formation in Olive Flounder (Paralichthys olivaceus) Erythrocytes Induced by Potassium Permanganate, Stabilized Chlorine Dioxide, Formalin and Copper Sulphate (과망간산칼륨, 안정화이산화염소, 포르말린, 황산동이 넙치(Paralichthys olivaceus) 적혈구에 미치는 시험관내 용혈작용 및 메트헤모글로빈 생성 효과)

  • Jung, Sung-Hee;Kim, Jin-Woo
    • Journal of fish pathology
    • /
    • v.18 no.2
    • /
    • pp.179-185
    • /
    • 2005
  • In Vitro hemolysis and methemoglobin (MetHb) formation in olive flounder rythrocytes were investigated using potassium permanganate ($KMnO_4$) ranging from 2 to 250 ppm, stabilized chlorine dioxide ($S-ClO_2$)ranging from 3.13 to 400 ppm, formalin (37% formaldehyde) ranging from 31.3 to 2,000 ppm and copper sulphate ($CuSO_4$) ranging from 0.04 to 5 ppm. Remarkable hemolysis was found to be induced at $KMnO_4$ concentrations of 31.3-250 ppm and $CuSO_4$ concentrations of 0.63-5 ppm. On the other hand, MetHb formation could not be found at the same treatment concentrations. It is suggested that the cell-damaging system of $KMnO_4$ may be similar from that of $CuSO_4$ in the erythrocytes of olive flounder. Remarkable hemolysis and MetHb formation were found to be induced at $S-ClO_4$ concentrations of more than 25 ppm and 6.25 ppm, respectively. Only $S-ClO_2$ showed both hemolysis and MetHb formation among the chemicals used in the present study. Formalin did not provoke hemolysis at the highest concentration of 2,000 ppm but induced MetHb formation at ranging from 250 to 2,000 ppm. These findings reveal that the mechanism involved in formalin-induced cell-damaging effects differs from that induced by $S-ClO_2$ to olive flounder erythrocytes compared with $KMnO_4$ and $CuSO_4$.