• Title/Summary/Keyword: Stabilization System

Search Result 1,434, Processing Time 0.027 seconds

Mechanism Analysis and Stabilization of Three-Phase Grid-Inverter Systems Considering Frequency Coupling

  • Wang, Guoning;Du, Xiong;Shi, Ying;Tai, Heng-Ming;Ji, Yongliang
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.853-862
    • /
    • 2018
  • Frequency coupling in the phase domain is a recently reported phenomenon for phase locked loop (PLL) based three-phase grid-inverter systems. This paper investigates the mechanism and stabilization method for the frequency coupling to the stability of grid-inverter systems. Self and accompanying admittance models are employed to represent the frequency coupling characteristics of the inverter, and a small signal equivalent circuit of a grid-inverter system is set up to reveal the mechanism of the frequency coupling to the system stability. The analysis reveals that the equivalent inverter admittance is changed due to the frequency coupling of the inverter, and the system stability is affected. In the end, retuning the bandwidth of the phase locked loop is presented to stabilize the three-phase grid-inverter system. Experimental results are given to verify the analysis and the stabilization scheme.

ATTITUDE DETERMINATION AND CONTROL SYSTEM OF KITSAT-1 (우리별 1호의 자세제어 시스템)

  • 이현우;김병진;박동조
    • Journal of Astronomy and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.67-81
    • /
    • 1996
  • The attitude dynamics of KITSAT-1 are modeled including the gravity gradient stabilization method. We define the operation scenario during the initial attitude stabilization period by means of a magnetorquering control algorithm. The required constraints for the gravity gradient boom deployment are also examined. Attitude dynamics model and control laws are verified by analyzing in-orbit attitude sensor telemetry data.

  • PDF

Experimental Verification of Effectiveness of Stabilization Control System for Mobile Surveillance Robot (기동형 경계로봇 안정화 시스템의 실험적 검증)

  • Kim, Sung-Soo;Lee, Dong-Youm;Kwon, Jeong-Joo;Park, Sung-Ho
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.4
    • /
    • pp.359-365
    • /
    • 2011
  • A mobile surveillance robot is defined as a surveillance robot system that is mounted on a mobile platform and is used to protect public areas such as airports or harbors from invaders. The mobile surveillance robot that is mounted on a mobile platform consists of a gun module, a camera system module, an embedded control system, and AHRS (Attitude and Heading Reference System). It has two axis control systems for controlling its elevation and azimuth. In order to obtain stable images for targeting invaders, this system requires a stabilizer to compensate any disturbance due to vehicle motion. In this study, a virtual model of a mobile surveillance robot has been created and ADAMS/Matlab simulations have been performed to verify the suitability of the proposed stabilization algorithm. Further, the suitability of the stabilization algorithm has also been verified using a mock-up of the mobile surveillance robot and a 6-DOF (Degree Of Freedom) motion simulator.

Stabilization Converter Design and Modeling of LEO Satellite Power Systems (저궤도 위성의 전력 시스템 안정화를 위한 모델링 및 제어)

  • Yun, Seok-Teak;Won, Young-Jin;Lee, Jin-Ho
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.2
    • /
    • pp.29-33
    • /
    • 2010
  • Satellites industry has been developing with the commercial and military needs. Because power system of satellite is very important to survival operation and hard to test, increasing reliability is very critical. Due to LEO small satellites are very sensitive to power system, effective stabilization control is important. Therefore, this paper introduce methods for general modeling of power converting system which it can be used design of controller and analysis of external disturbance influences. In conclusion, a modeling of LEO small satellites power converting system and a possible guide line to design reliable controller which optimizing power converters of LEO small satellite are generated.

A Study on the Vibration Characteristics of Camera Module for Aerial Reconnaissance Considering Vibration Isolator (방진을 고려한 항공 정찰용 카메라 모듈부의 진동특성에 관한 연구)

  • Lee, Sang-Eun;Lee, Tae-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.29 no.5
    • /
    • pp.545-553
    • /
    • 2012
  • A Gimbal structure system in observation reconnaissance aircraft is made up of camera module and stabilization drive device supporting camera module. During flight for image recording, the aircraft undergoes serious accelerations with wide frequencies due to several factors. Though base excitation of stabilization drive device induces vibration of camera module, it must get the stable and clean images. To achieve this aim, acceleration of camera module must be reduced. Hence, vibration isolators were installed to stabilization drive device. Considering isolators and bearings in the stabilization drive device, vibration characteristics of gimbal structure system were analyzed by finite element method. For three translational direction, acceleration transmissibility of camera module was calculated by harmonic responses analysis in the frequency range of 5 ~ 500 Hz. In addition to, sine-sweep experiment were performed to prove correctness of present analysis.

A Comparison on Effect of Stabilization Methods for Heavy Metal contaminated Farm Land Soil by the Field Demonstration Experiment (현장실증시험을 통한 중금속 오염농경지의 안정화처리공법 효과비교)

  • Yu, Chan;Yun, Sung-Wook;Lee, Jung-Hoon;Choi, Seung-Jin;Choi, Duck-Yong;Yi, Ji-Min
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.09a
    • /
    • pp.1487-1506
    • /
    • 2009
  • A long-term field experiment of the selected stabilization methods(Cover system, full range and upper range treatment) was conducted to reduce the heavy metal mobility in farmland soil which was contaminated by heavy metals around abandoned mine site. Field experiments were established on the contaminated farmland with the wooden plate and filled with treated soil, which was mixed with lime stone and steel reforming slag except on control plot. Soil samples were collected and analyzed during the experiment period(about 4 months) after the installation of the plots. Field demonstration experiments results showed that the cover system and the full range treatment of the selected stabilization methods applied to the application ratio of lime stone 5% and steel refining slag 2% were effective for immobilizing heavy metal components in contaminated farmland soil.

  • PDF

Posture Stabilization Control for Mobile Robot using Marker Recognition and Hybrid Visual Servoing (마커인식과 혼합 비주얼 서보잉 기법을 통한 이동로봇의 자세 안정화 제어)

  • Lee, Sung-Goo;Kwon, Ji-Wook;Hong, Suk-Kyo;Chwa, Dong-Kyoung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.8
    • /
    • pp.1577-1585
    • /
    • 2011
  • This paper proposes a posture stabilization control algorithm for a wheeled mobile robot using hybrid visual servo control method with a position based and an image based visual servoing (PBVS and IBVS). To overcome chattering phenomena which were shown in the previous researches using a simple switching function based on a threshold, the proposed hybrid visual servo control law introduces the fusion function based on a blending function. Then, the chattering problem and rapid motion of the mobile robot can be eliminated. Also, we consider the nonlinearity of the wheeled mobile robot unlike the previous visual servo control laws using linear control methods to improve the performances of the visual servo control law. The proposed posture stabilization control law using hybrid visual servoing is verified by a theoretical analysis and simulation and experimental results.