• Title/Summary/Keyword: Stabilization Control

Search Result 1,253, Processing Time 0.035 seconds

Development of Switching System for Flight Control Law (비행제어법칙 전환시스템 개발)

  • Ahn, Jong-Min;Im, Sang-Soo;Kwon, Jong-Kwang;Choi, Sup;Lee, Yong-Pyo;Ko, Joon-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.7
    • /
    • pp.712-718
    • /
    • 2008
  • This paper deals with a development of flight control law switching system which can be used for flight test of the research control law by switching control law during flight. Through this research program, fader logic and integrator stabilization design has been introduced to minimize the transient response of aircraft caused by flight control law switching and to prevent the divergence of the integrator included in the control law in standby mode. MIL-STD-1553B communication was applied to transfer the data between the two control laws. This paper introduce the control law switching system architecture and major design concept and include the system verification and validation result performed on the flying quality simulator of the advanced trainer.

Modeling of Reaction Wheel Using KOMPSAT-1 Telemetry (KOMPSAT-1 Telemetry를 활용한 반작용휠 모델링)

  • Lee, Seon-Ho;Choi, Hong-Taek;Yong, Gi-Ryeok;Oh, Si-Hwan;Rhee, Seung-U
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.32 no.3
    • /
    • pp.45-50
    • /
    • 2004
  • The design of reaction wheel control logic is critical to achieve the spacecraft attitude stabilization and performance requirements for the successful mission. Due to various uncertainties on orbit there exist limitation to obtain the model parameters through the ground tests and to design the associated control logic. Thus, the model parameter correction using on-orbit data is essential to the control performance on orbit. This paper performs the system identification using KOMPSAT-1 telemetry data and extracts the model parameters of the reaction wheel. Moreover, the reaction wheel is remodeled and compared with the ground test results.

Nonlinear Adaptive Velocity Controller Design for an Air-breathing Supersonic Engine

  • Park, Jung-Woo;Park, Ik-Soo;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.3
    • /
    • pp.361-368
    • /
    • 2012
  • This paper presents an approach on the design of a nonlinear controller to track a reference velocity for an air-breathing supersonic vehicle. The nonlinear control scheme involves an adaptation of propulsive and aerodynamic characteristics in the equations of motion. In this paper, the coefficients of given thrust and drag functions are estimated and they are used to approximate the equations of motion under varying flight conditions. The form of the function of propulsive thrust is extracted from a thrust database which is given by preliminary engine input/output performance analysis. The aerodynamic drag is approximated as a function of angle of attack and fin deflection. The nonlinear controller, designed by using the approximated nonlinear control model equations, provides engine fuel supply command to follow the desired velocity varying with time. On the other hand, the stabilization of altitude, separated from the velocity control scheme, is done by a classical altitude hold autopilot design. Finally, several simulations are performed in order to demonstrate the relevance of the controller design regarding the vehicle.

A Study on Model and Control of Pinching Motion for Multi-Fingered Robot (다관절 핑거 로봇의 파지 운동 모델과 제어에 관한 연구)

  • Um H.;Choi J.H.;Kim Y.S.;Yang S.S.;Lee J.G.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.1060-1067
    • /
    • 2005
  • This paper attempts to derive and analyze the dynamic system of pinching a rigid object by means of two multi-degrees-of-freedom robot fingers with soft and deformable tips. It is shown firstly that a set of differential equation describing dynamics system of the manipulators and object together with geometric constraint of tight area-contacts is formulated by Lagrange's equation. It is shown secondly that the problems of controlling both the forces of pressing object and the rotation angle of the object under the geometric constraints are discussed. In this paper, the control method for dynamic stable grasping and enhancing dexterity in manipulating things is proposed. It is illustrated by computer simulation that the control system gives the performance improvement in the dynamic stable grasping of the dual fingers robot with soft tips.

  • PDF

Adoptive IIR Fillers for Active Noise Control (능동소음제어를 위한 적용 IIR 필터)

  • 남현도
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.16 no.5
    • /
    • pp.112-118
    • /
    • 2002
  • The adaptive m filters is more effective than m filters when acoustic feedback exists, in which cause an order of a FIR filter must be very large if some of poles of the ideal control filter are near the unit circle. But the IIR filters may have stability problems especially when the adaptive algorithm is not converged. In this paper, a stabilizing procedure for adaptive IIR filters is proposed. In the beginning of the ANC system, it improve a stability by pulling the poles of the IIR filter to the center of the unit circle, and it returns the poles to their original positions after the filter converge. Computer simulations and experiments are performed to show the effectiveness of proposed schemes.

Reliable Control for Linear Dynamic Systems with Time-varying Delays and Randomly Occurring Disturbances (시변지연 및 임의 발생 외란이 존재하는 선형 동적 시스템의 신뢰성 제어)

  • Kim, Ki-Hoon;Park, Myeong-Jin;Kwon, Oh-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.7
    • /
    • pp.976-986
    • /
    • 2014
  • In this paper, the problem of reliable control of linear systems with time-varying delays, randomly occurring disturbances, and actuator failures is investigated. It is assumed that actuator failures occur when disturbances affect to the systems. Firstly, by using a suitable Lyapunov-Krasovskii functional and some recent techniques such as Wirtinger-based integral inequality and reciprocally convex approach, stabilization criterion for nominal systems with time-varying delays is derived. Secondly, the proposed method is extended to the reliable $H_{\infty}$ controller design for linear dynamic systems with time-varying delays, randomly occurring disturbances, and actuator failures. Since nonlinear matrix inequalities (NLMIs) are involved in proposed results, the cone complementarity algorithm will be introduced. Finally, two numerical examples are included to show the effectiveness of the proposed criteria.

DC-Voltage Regulation for Solar-Variable Speed Hybrid System (태양광 기반의 가변속 하이브리드 시스템을 위한 직류 전압 제어)

  • Niyitegeka, Gedeon;Lee, Kyungkyu;Choi, Jaeho;Song, Yujin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.3
    • /
    • pp.231-237
    • /
    • 2016
  • Recently, the interest in DC systems to achieve more efficient connection with renewable energy sources, energy storage systems, and DC loads has been growing extensively. DC systems are more advantageous than AC systems because of their low conversion losses. However, the DC-link voltage is variable during operation because of different random effects. This study focuses on DC voltage stabilization applied in stand-alone DC microgrids by means of voltage ranges, power management, and coordination scheme. The quality and stability of the entire system are improved by keeping the voltage within acceptable limits. In terms of optimized control, the maximum power should be tracked from renewable resources during different operating modes of the system. The ESS and VSDG cover the power shortage after all available renewable energy is consumed. Keeping the state of charge of the ESS within the allowed bands is the key role of the control system. Load shedding or power generation curtailment should automatically occur if the maximum tolerable voltage variation is exceeded. PSIM-based simulation results are presented to evaluate the performance of the proposed control measures.

An experimental study on the myocardial protection effect of the methylprednisolone mixed GIK solution (Methylprednisolone을 첨가한 GIK용액의 심근보호효과에 관한 실험적 연구)

  • 유시원
    • Journal of Chest Surgery
    • /
    • v.17 no.4
    • /
    • pp.574-586
    • /
    • 1984
  • Although corticosteroid have been shown to stabilize lysosomal membranes and prevent release of hydrolytic enzymes, the mechanism of membrane stabilization remains obscure. This study described functional assessment of efficiency of methylprednisolone in GIK solution by using a isolated Rat Heart Model. Isolated rat heart were subjected to a 2-minute period of coronary infusion with a cold GIK or methylprednisolone mixed cold GIK solution immediately before and also at the midpoint of a 60-minute period of hypothermic [$10{\pm}1^{\circ}C$] ischemic arrest. The result of this were as follow: 1.Spontaneous heart beat after ischemic arrest occurred 11 second later after Langendorffs reperfusion in the methylprednisolone mixed GIK group and 14 second later in the control group. 2.The percentage of recoveries of heart rate at 30 minute after postischemic working heart perfusion was 88.6\ulcorner.6% in the methylprednisolone mixed GIK group. This percentage of recovery was not significantly greater than the control group. 3.The percentage of heart function at 30 minute after postischemic working heart perfusion were; peak aortic pressure $90.8{\pm}4.5%$ coronary flow $87.5{\pm}1.45$ and aortic flow $74.9{\pm}11.8%$ in the methylprednisolone mixed GIK group. This percentage of recovery was significantly greater than the control group. [p<0.05]

  • PDF

The study of stability exercise using pressure biofeedback unit for low back pain (요통에서의 pressure biofeedback unit(stabilizer)를 사용한 안정화 운동)

  • Kim, Gook-Joo;Kong, Kwan-Woo;Kwon, Sun-Oh;Jang, Yong-Geun;Hwang, Hee-Jun;Park, Jun-Ki
    • Journal of Korean Physical Therapy Science
    • /
    • v.19 no.2
    • /
    • pp.63-71
    • /
    • 2012
  • Purpose : This study aimed to acquire a basic knowledge about lumbar stability and inquire into exercise approach of pressure biofeedback unit for lumbar stability. Methods : This study was composed with reviewed theory of lumbar stability and several books and articles for exercise using pressure biofeedback unit. Results : The stability of lumbar should work symmetrical with passive, active, control subsystem in neutral zone, and local muscles should be using for stability. Especially, selective using of transverse abdominis work for lumbar stability importantly. The control of using pressure biofeedback unit may important not only examination but treatment. Conclusion : The stability of lumbar need co-contraction of specific local muscle and training for timing as well as using pressure biofeedback unit for accurate control may use for examination and therapedic approach.

  • PDF

A Study on PID Gain Auto Tuning for Steering Type mobile robot (조향형 이동로봇을 위한 PID 이득 자동 튜닝에 관한 연구)

  • Jung, Se-Young;Yang, Tae-Kyu
    • Journal of Satellite, Information and Communications
    • /
    • v.11 no.4
    • /
    • pp.39-43
    • /
    • 2016
  • In this paper, we propose PID gain auto tuning method in steering type mobile robot. PID controller gain select method are various methods. Ziegler-Nichols step tuning method is one method tuning in PID controller. Use step tuning method find a the first gain and did experiment in steering mobile robot. and Make a new the second gains from the first gains. After appling the second gain in PID controller, Where perform observe for convergence time and stabilization error. Experiments result the second gain are useful in real steering mobile robot system.