• Title/Summary/Keyword: Stability of underground opening

Search Result 31, Processing Time 0.027 seconds

Sensitivity analysis of tunnel stability with a consideration of an excavation damaged zone (암반손상대를 고려한 터널 안정성 민감도 분석)

  • Kim, Jin-Soo;Kwon, Sanki
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.1
    • /
    • pp.91-104
    • /
    • 2014
  • An Excavation Damaged Zone (EDZ), in which rock properties are permanently changed due to blasting impact or stress redistribution, can influence the behavior and stability of structures. In this study, the mechanical stability of an underground opening was simulated by using FLAC, which is a two-dimensional modeling code, with a consideration of EDZ. A sensitivity analysis was also carried out with fractional factorial design. From the modeling, it was found that the behavior and the stability of an underground tunnel are strongly dependent on the existence of the EDZ. The sensitivity analysis showed that the key parameters affecting the factor of safety around the tunnel are in-situ stress ratio, depth, cohesion, reduction ratio, internal friction angle, and height and width of the tunnel. It is necessary to consider the EDZ, which can significantly affect mechanical stability in tunnel design.

A Theoretical and Numerical Study on Channel Flow in Rock Joints and Fracture Networks (암석절리와 균열망내에서의 채널흐름에 관한 이론적 수치해석적 연구)

  • 송명규;주광수
    • Tunnel and Underground Space
    • /
    • v.4 no.1
    • /
    • pp.1-16
    • /
    • 1994
  • The study on the flow characteristics and analysis of groundwater in discontinuous rock mass is very important, since the water inflow into the underground opening during excavation induces serious stability and environmental problems. To investigate the flow through single rock joint, the effect of various aperture distribution on the groundwater flow has been analyzed. Observed through the analysis is the "channel flow", the phenomenon that the flow is dominant along the path of large aperture for given joint. The equivalent hydraulic conductivity is estimated and verified through the application of the joint network analysis for 100 joint maps generated statistically. Both the analytic aproach based on isotropic continuum premise and the joint network analysis are tested and compared analyzing the gorundwater inflow for underground openings of different sizes and varying joint density. The joint network analysis is considered better to reflect the geometric properties of joint distribution in analyzing the groundwater flow.ater flow.

  • PDF

Acoustic emission characteristics during damage-zone formation around a circular opening

  • Jong-Won Lee;Eui-Seob Park;Junhyung Choi;Tae-Min Oh;Min-Jun Kim
    • Geomechanics and Engineering
    • /
    • v.36 no.5
    • /
    • pp.511-525
    • /
    • 2024
  • Underground openings significantly affect the mechanical stability of underground spaces and create damaged zones. This study investigated the acoustic emission (AE) characteristics associated with the formation of damaged zones around circular openings. Uniaxial compression experiments were conducted on three types of rock specimens, namely, granite (GN-1 and GN-2), gabbro (GB), and slate (SL), containing a circular opening. AE and digital image correlation (DIC) techniques were used to monitor and evaluate the damaged zones near the circular openings. The AE characteristics were evaluated using AE parameters, including count, energy, amplitude, average frequency, and RA value. The DIC results revealed that the estimated diameters of the damaged zones of GN-1, GN-2, GB, and SL were 1.66D, 1.53D, 1.49D, and 1.9D, respectively. The average displacements at the surface of the damaged zones for these specimens were 0.814, 0.786, 0.661, and 0.673 mm, respectively, thus demonstrating a strong correlation with Young's modulus. The AE analysis with DIC revealed that tensile failure occurred in the direction parallel to the maximum compression axis as the load increased. Thus, this study provides fundamental data for a comprehensive analysis of damaged zones in underground openings and will facilitate the optimization of rock engineering projects and safety assessments thereof.

Elastic stability analysis of curved steel rib using differential quadrature method (DQM) (미분 구적법 (DQM)을 이용한 곡선 강지보의 안정성 해석)

  • Kang, Ki-Jun;Kim, Byeong-Sam;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.4
    • /
    • pp.279-290
    • /
    • 2004
  • The differential quadrature method (DQM) for a system of coupled differential equations governing the elastic stability of thin-walled curved members is presented, and is applied to computation of the eigenvalues of out-of-plane buckling of curved beams subjected to uniformly distributed radial loads including a warping contribution. Critical loads with warping, which were found to be significant, are calculated for a single-span wide-flange beam with various end conditions, opening angles, and stiffness parameters. The results are compared with the exact methods available. New results are given for the case of both ends clamped and clamped-simply supported ends without comparison since no data are available The differential quadrature method gives good accuracy and stability compared with previous theoretical results.

  • PDF

A Study on the Effect of Underground Openings on the Stability of Surface Structures Using Scaled Model Tests (지하 채굴적이 지표 구조물의 안정성에 미치는 영향에 관한 모형실험 연구)

  • 김종우;전석원;서영호
    • Tunnel and Underground Space
    • /
    • v.14 no.1
    • /
    • pp.43-53
    • /
    • 2004
  • In this study, scaled-model tests were performed to investigate the effect of underground openings on the stability of surface structure around the abandoned coal mine areas. Four types of test models which had respectively different depths of openings and different ground reinforcement conditions were introduced, where the modelling materials were the mixture of sand, plaster and water. The model with deep openings were turned out more stable to the structure than the model with shallow ones, because the crack-initiating pressure of the former was 2.5 times as much as that of the latter. The models with ground reinforcement were also fumed out more stable than the model without reinforcement, because the crack-initiating pressure of the former was 2.4 times as much as that of the latter. Subsidence profiles were analysed to find the characteristics of slope and curvature, and the model with large reinforcement were turned out the most stable.

A Study on the Stability Analysis of Underground Mine using LIDAR (LIDAR를 활용한 지하광산의 안정성 분석에 관한 연구)

  • Lee, Seung-Joong;Kim, Byung-Ryeol;Jin, Yeon-Ho;Choi, Sung-Oong
    • Tunnel and Underground Space
    • /
    • v.27 no.6
    • /
    • pp.406-421
    • /
    • 2017
  • This study describes a precise numerical analysis process by adopting the real image of mine openings obtained by LIDAR, which can produce a point cloud data by measuring the target surface numerically. Research area is a section of underground limestone mine which is used hybrid room-and-pillar method for improving the production rate. From the application of LIDAR to this section several results were deduced, that is, the central axis of upper and lower vertical safety pillars is distorted to the direction of NW and the section area of lower vertical safety pillar is $34m^2$ smaller than the designed area of $100m^2$. The results of precise measurement in geometrical shape of mine openings and precise simulation in numerical analysis confirms that LIDAR techniques can be suggested as a valuable tool for stability analysis in underground mine by configuring the mine opening shape.

Stability Assessment of Abandoned Gangway for Commercial Utilization of Services (서비스업 활용을 위한 광산 폐갱도의 안정성 평가)

  • SunWoo, Choon;Chung, So-Keul;Lee, Yun-Su;Kang, Sang-Soo;Kang, Jung-Seok
    • Tunnel and Underground Space
    • /
    • v.22 no.5
    • /
    • pp.297-309
    • /
    • 2012
  • The stability assessment of abandoned gangway for the purpose of services was performed. Among the many factors that affect the stability of openings, the span of the opening in a given rock mass condition provides an important element of design. In this paper, the stability of gangway was assessed by the critical span curves proposed by Lang, the modified Mathews'stability graph method and using support measures of the Q system. In the evaluation of stability as a whole the gangway is considered as stable. But the rockfalls of wedge-shaped blocks were expected in the area in which the horizontal joints of low angle appear. The support measures such as local rock bolts are required to use for commercial purposes of the abandoned gangway. And entrance section may require the particular attention as unstable section. Since there are so many spalling due to bad blasting in the roof and sidewall of gangway, the scaling operations should be followed primarily.

Numerical Analysis of Deformation Behaviour of Underground Opening in a Discontinuous Rock Mass Using a Continuum Joint Model (연속체 절리모델을 이용한 불연속성암반 내 지하공동의 변형거동에 관한 수치해석)

  • Kang Sang Soo;Lee Jong-Kil;Baek Hwanjo
    • The Journal of Engineering Geology
    • /
    • v.15 no.3
    • /
    • pp.257-268
    • /
    • 2005
  • In situ rock mass is generally heterogeneous and discontinuous, with varying degrees of strength along the planes of weakness. The planes of weakness such as joints, faults, cracks and bedding planes, control the strength and deformation characteristics of the rock mass. Subsequently, the stability of underground opening depends upon the spatial distribution of discontinuities and their mechanical properties in relation with geometrical shape of openins as well as the mechanical properties of intact rock materials. Understanding the behaviour of a discontinuous rock mass remains a key issue for improving excavation design in hiかy stressed environments. Although recent advances in rock mechanics have provided guidelines for the design of underground opening in isotropic rock mass, prediction and control of deformation in discontinuous rock masses are still unclear. In this study, parametric study was performed to investigate the plastic zone size, stress distribution and deformation behavior around underground opening in a discontinuous rock mass using a continuum joint model. The solutions were obtained by an elasto-plastic finite difference analysis, employing the Mohr-Coulomb failure criteria. Non-associated flow rule and perfectly plastic material behavior are also assumed.

A Study on Stability Analysis of Large Underground Limestone Openings considering Excavation Damaged Zone (굴착손상영역을 고려한 대형 석회석 갱내채광장의 안정성 분석 연구)

  • Kwon, Min-Hyuk;Choi, Sung-Oong;Kim, Chang-Oh
    • Tunnel and Underground Space
    • /
    • v.26 no.2
    • /
    • pp.131-142
    • /
    • 2016
  • Investigation for rock joints, inspection for rock core, and laboratory tests for rock specimens, in this study, have been performed for identification of the extent and properties of Excavation Damaged Zone in a underground limestone mine, which plans to enlarge the size of openings to improve the production rate. Properties of EDZ and surrounding rock masses have been used numerically for discontinuum analysis, and it is concluded that the effect of EDZ can be increased with increasing the opening size and a blasting pattern of high precision can be suggested for the counterplan.

Characteristics of the Progressive Brittle Failure around Circular Opening by Scaled Model Test and Discrete Element Analysis (축소 모형시험과 개별 요소 해석에 의한 원형 공동 주변의 점진적 취성파괴 특성에 관한 연구)

  • Jeon Seok-Won;Park Eui-Seob;Bae Seong-Ho
    • Tunnel and Underground Space
    • /
    • v.15 no.4 s.57
    • /
    • pp.250-263
    • /
    • 2005
  • Progressive and localized brittle failures around an excavated opening by the overstressed condition can act as a serious obstacle to ensure the stability and the economical efficiency of construction work. In this paper, the characteristics of the brittle failure around an circular opening with stress level was studied by the biaxial compressive test using sealed specimen and by the numerical simulation with $PFC^{2D}$, one of the discrete element codes. The occurring pattern and shape of the brittle failure around a circular opening monitored during the biaxial loading were well coincided with those of the stress induced failures around the excavated openings observed in the brittle rock masses. The crack development stages with stress level were evaluated by the detailed analysis on the acoustic emission event properties. The microcrack development process around a circular opening was successfully visualized by the particle flow analysis. It indicated that the scaled test had a good feasibility in understanding the mechanism of the brittle failure around an opening with a high reliability.