• Title/Summary/Keyword: Stability of underground opening

Search Result 31, Processing Time 0.022 seconds

Stability Assessment of Underground Limestone Mine Openings by Stability Graph Method (Stability graph method에 의한 석회석 지하채굴 공동의 안정성 평가)

  • Sunwoo Choon;Jung Yong-Bok
    • Tunnel and Underground Space
    • /
    • v.15 no.5 s.58
    • /
    • pp.369-377
    • /
    • 2005
  • The stability of underground openings is a major concern for the safety and productivity of mining operations. Rock mass classification methods provide the basis of many empirical design methods as well as a basis for numerical analysis. Of the many factors which influence the stability of openings, the span of the opening for a given rock mass condition provides an important parameter of design. In this paper, the critical span curves proposed by Lang, the Mathews stability graph method and the modified critical span curve suggested by the authors have been assessed. The modified critical span curve was proposed by using Mathews stability graph method. The modified critical span curve by the author have been used to assess the stability of underground openings in several limestone mines.

Proposal of the Unsupported Span of Openings in the Domestic Underground Limestone Mines (국내 지하 석회석광산 갱도의 무지보 폭을 위한 제안)

  • SUNWOO, Choon
    • Tunnel and Underground Space
    • /
    • v.28 no.4
    • /
    • pp.358-371
    • /
    • 2018
  • The stability of openings in the underground mine is major concern in the operation of mines that must ensure productivity and safety. Among many rock conditions affecting cavities stability, the width and height of the opening is an important design factor. In this paper, we consider to determine the maximum unsupported span of a opening in a limestone mine by using the Q system among several rock classification schemes. In order to determine the span of the unsupported opening in the limestone mine, rock mass classifications were carried out at over 200 sites in the underground limestone mines. The relationships by using the Q system and the stability graph proposed by Mathews to determine the maximum span of the unsupported opening were derived and compared. We propose a new classification method that combines GSI and RMR rock classification systems to make it easy to use in a field.

A Study on the Stability Analysis of Underground Limestone Openings using the Measurement Vibration Waveform (실측진동파형을 이용한 석회석 갱내채광장의 안정성 분석 연구)

  • Kim, Byung-Ryeol;Lee, Seung-Joong;Choi, Sung-Oong
    • Tunnel and Underground Space
    • /
    • v.28 no.5
    • /
    • pp.457-475
    • /
    • 2018
  • For increase of reality in numerical analysis, a blasting vibration waveform obtained from field blast operations has been directly used for input parameters of dynamic analysis in the form of vibration velocity. A numerical model was built considering the geological characteristics of underground limestone opening as well as the mining stages in this opening, and the effect of blast operations on stability of underground limestone opening was investigated by dynamic numerical analysis. The adequacy of applying the real vibration waveform to dynamic analysis has been approved from the preliminary analysis, and the dynamic numerical analysis results show that the continuous mining operation can cause the collapse of roof in openings and the active yield zone around openings. Therefore, the additional reinforcements should be applied for ensuring the stability of underground limestone openings.

Review on Design of Underground Mine Openings in Korea and Overseas (국내외 지하광산 갱도설계 현황에 대한 고찰)

  • Yoon, Dong-Ho;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.29 no.1
    • /
    • pp.30-37
    • /
    • 2019
  • Some leading countries in mining have a very quantitative guideline for underground mine opening design which is useful to minimize mine hazards such as rockfall and collapse. Those hazards sometimes can cause a huge damage on human life and property in the mines. Construction guidelines of underground mines in Korea consist of qualitative and general expressions although the workers' safety rules and guides are well provided. Recently, mining operations in Korea are going underground due to the environmental regulations and resource depletion at shallow depth, and therefore there is a growing demand on a specialized and systematic guideline for mine opening design securing the underground stability. In this paper, current status of mining industry, research trends, and mining guidelines in Korea and overseas have been reviewed to give an insight into developing a new Korean guideline for underground mine design.

Fast Analysis of Rock Block Behavior on Underground Opening considering Geostatic Stress Conditions (지체응력조건을 고려한 지하공동 주변부 암석블록의 신속한 거동 안정성 분석)

  • Kang, Il-Seok;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.29 no.1
    • /
    • pp.64-74
    • /
    • 2019
  • Behavior of a rock block consisting of rock joints during excavation of an underground opening is an important factor for the mechanical stability of the opening. In this study, the behavior of a rock block under different geostatic stress and joint property conditions was analyzed quantitatively. The behavior of the rock block analyzed by 3DEC numerical analysis was compared with that of the theoretical calculation, and the error between the theoretical value and the numerical analysis result was analyzed under various geostatic stress and joint property conditions. The result of the stability analysis of a rock block showed less than 5% of error with numerical simulation result, which verified the applicability of the purposed analytic solution.

Development of finite element analysis model for multi-step excavation problem (시공단계를 고려할 수 있는 유한요소 해석 모델 개발)

  • Lee, Youn-Kyou
    • Tunnel and Underground Space
    • /
    • v.6 no.4
    • /
    • pp.326-334
    • /
    • 1996
  • In underground construction the multi-step excavation sequence is commonly adopted for the convenience of the underground work. A numerical simulation method which is capable of analyzing the effects of excavation sequence on the stability of the opening is greatly needed. In this study a two dimensional finite element code was developed based on the effective numerical algorithm for the multistep excavation. The practical applicability of the model was verified for the simplified excavation sequences.

  • PDF

Probabilistic stability analysis of underground structure using stochastic finite element method

  • Na, Sang-Min;Moon, Hyun-Koo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.192-197
    • /
    • 2003
  • It can be said that rock mass properties are characterized not by a mean value but by values with variation due to its characteristic uncertainty. This characteristic is one of the most important parts for the design of underground structures, but yet to be fully examined. Stochastic finite element method (SFEM) has been developed in order to take the randomness of structural systems into account. Using SFEM, the response variability of structural system can be obtained and it leads probabilistic stability of structure to be analyzed. In this study, displacements response variability of circular opening with hydrostatic stress field are analyzed in terms of rock mass properties having a certain mean and a standard deviation using the SFEM. The analyzed response variability shows that the necessity of probabilistic stability analysis of underground structures using reliable mean value and standard deviation of deformation modulus.

  • PDF

A Fundamental Study on Backfilling and Monitoring System for Stability of Underground Mine Openings (채굴공동의 안정성 유지를 위한 채움재의 충전과 계측시스템 구축에 관한 기초연구요)

  • Kim, Byung-Ryeol;Lee, Seung-Joong;Choi, Sung-Oong
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.407-424
    • /
    • 2019
  • To prevent possible accidents by surface subsidence, backfilling operation is known to be one of the most effective methods for ensuring the long-term ground stability because it can eliminate fundamentally the origin of underground mine opening collapse. Also, for effective backfilling of underground mine opening, it is necessary to keep monitoring of backfilled mine opening for analyzing several factors such as filling effect with change of backfill material and characteristics of backfill material. Therefore, in this study, a monitoring system which consists of measuring device and software program has developed to examine the performance of backfilling operation and verify to field applicability to underground mine. Sensors for measuring device have been selected through study of recent research papers and mock-up test has been performed to verify the system compliance. Also, monitoring result of the mock-up test compared to case studies in some countries. From monitoring result fo the mock-up test compared to case studies in some countries, consequently, it was concluded that the developed real-time monitoring system had ensured filed applicability in the underground mine.

A Study on the Shape and Size Effects on the Stability of Underground Openings (지하공동의 형상과 규모가 공동의 안정성에 미치는 영향 연구)

  • 박상찬;문현구
    • Geotechnical Engineering
    • /
    • v.14 no.1
    • /
    • pp.93-108
    • /
    • 1998
  • In this study, the analytic solutions and numerical methods were used to estimate the shape and size effects on the stability of underground openings. The stability of underground openings was evaluated by scrutinizing the effects of the rock mass quality, the state of in-situ stresses and the lateral earth pressure coefficient on the displacement, the stress concentration and the plastic region developed in the vicinity of the openings. The analytic solutions have shown that the stress concentration factor is inversely proportional to the radius of curvature of openings. Through parametric study on the various shapes and sizes of underground openings the characteristics of the controlling factors concerned with the stability were analyzed. Then, the study was extended to the horseshoe-shaped openings commonly used for under ground storage. Through the extended study the effects of the stress ratio and the height-towidth ratio of openings on the maximum displacement and plastic region developed around the openings were estimated. The results have shorn that the height-to-width ratio of domestic storage caverns can be increased economically without stability problem, as far as the lateral earth pressure coefficient is appropriate.

  • PDF

A Study on the Thermo-mechanical Behavior of Underground Openings in lsotropic and Structurally Snisotropic Rock Masses (등방 및 이방성 암반내 공동의 열역학적 거동에 관한 전산모델연구)

  • 문현구;주광수
    • Tunnel and Underground Space
    • /
    • v.1 no.2
    • /
    • pp.181-203
    • /
    • 1991
  • The effects of geologic structures such as rock joins and bedding planes on the thermal conductivity of a discontinuous rock mass are studied. The expressions for the equivalent thermal conductivities of jointed rock masses are derived and found to be anisotropic. The degree of anisotropy depends primarily on the thermal properties contrast between the joint phase and surrounding intact rock, the joint density expressed as volume fraction and the inclination angle of the joint. Within the context of 2-dimensional finite element heat transfer scheme, the isotherms around a circular hole are analyzed for both the isotropic and anisotropic rock masses in 3 different thermal boundary conditions. i.e. temperature, heat flux and convection boundary conditions. The temperature in the stratified anisotripic rock mass is greatly influenced by the thermal properties of the rock formation in contact with the heat source. Using the excavation-temperature coupled elastic plastic finite element method, analyzed is the thermo-mechanical stability of a circular opening subjected to 10$0^{\circ}C$ at a depth of 527m. It is found that the thermal stress concentration was enough to deteriorate the stability and form a plastic yield zone around the opening, in contrast to the safety factor greater than 2 resulted form the excavation-only analysis.

  • PDF