• Title/Summary/Keyword: Stability diagram

Search Result 194, Processing Time 0.021 seconds

A Preliminary Study of Flume Experiments on the Flow Velocity for Initial Formation of Bedforms on Bimodal Sand-sized Sediments (이정 사질 퇴적물의 층면구조 형성 속도에 대한 수조 실험 예비 연구)

  • Kim, Hyun Woo;Choi, Su Ji;Choi, Ji Soo;Kwon, Yoo Jin;Lee, Sang Cheol;Kwak, Chang Hwan;Kwon, Yi Kyun
    • Journal of the Korean earth science society
    • /
    • v.37 no.4
    • /
    • pp.218-229
    • /
    • 2016
  • The bedform stability diagram indicates the shape and size of bedforms that will occur to a given grain size and flow velocity. The diagram has been constructed from experimental data which have been mostly acquired by flume experiments. Generally, the flume experiments have been performed on well sorted sediments with unimodal grain size distribution, in order to understand relationship between grain size and flow velocity. According to the diagram, a ripple structure initiates to be formed from lower flow regime flat bed, as the flow velocity increases on the surface of fine-sand or medium-sand sediments. This study aims to verify that the experimental result of bedform stability diagram will be reproduced in our flume experimental systems, and also to confirm that the result is consistent not only on well-sorted sand sediments but also on poorly-sorted sand sediments with bimodal grain size distribution. The experimental results in this study show that initiation of 2D or 3D ripple structure on poorly-sorted sand sediments requires higher flow velocity and shear stress than those for initiation of the structure on well-sorted sand sediments. In general, carbonate sediments are characterized by poor sorting due to inactive hydraulic sorting and bimodal grain size distribution with allochems and matrices. The results suggest that the carbonate depositional system possibly need a higher flow velocity for initial formation of 2D or 3D bedform structures. The reason might be the fact that pulling off and lifting of a grain in poorly sorted sediments require more energy due to sorting, friction, stabilization, armour effects, and their complex interaction. This preliminary study warrants additional experiments under various conditions and more accurate analysis on the relationship between formation of bedforms and grain size distribution.

Study on Thermodynamic Properties of Sulfidization for Uranium and Rare Earth Oxides (우라늄 및 희토류(稀土流) 산화물(酸化物)의 황화반응(黃化反應)에 대한 열역학적(熱力學的) 고찰(考察))

  • Lee, Jung-Won;Lee, Jae-Won;Kang, Kweon-Ho;Park, Geun-Il
    • Resources Recycling
    • /
    • v.21 no.1
    • /
    • pp.66-74
    • /
    • 2012
  • In order to evaluate the feasibility of selective sulfidization of uranium and rare-earth(RE) oxides, an analysis on thermodynamic data, such as $M-O_2-S_2$ phase stability diagram and changes of Gibbs free energy for sulfidization of uranium and rare-earth oxides were carried out. Comparing $RE-O_2-S_2$ with $U-O_2-S_2$ phase stability diagram at wide range of sulfur potential, $UO_2$ remains unreacted, while RE oxides are sulfidized. The Gibbs free energy change(${\Delta}G^{\circ}$) of sulfidization of RE oxides is lower than that of uranium oxides. Thus, the selective formation of RE sulfides is possible during sulfidization of RE and uranium oxides at lower temperature. $CS_2$ was selected as a sulfidizing agent, because it is a stronger sulfidizing agent than other agents and reacts at lower temperature.

Polyether Ether Ketone Membrane with Excellent Pure Permeability Using Thermally Induced Phase Separation Method and Morphology Analysis with Characterization (열유도 상분리법을 이용한 순수 투과 성능이 우수한 폴리에테르 에테르 케톤 분리막 제조와 모폴로지 분석 및 특성평가)

  • Kwang Seop Im;Seong Jun Jang;Chae Hong Lim;Sang Yong Nam
    • Applied Chemistry for Engineering
    • /
    • v.35 no.3
    • /
    • pp.214-221
    • /
    • 2024
  • Polyether ketone (PEEK) has been widely used in membranes because of its excellent thermal stability, chemical resistance, and significant mechanical strength. However, the melting temperature is very high, making it difficult to find suitable solvents. Therefore, in this study, PEEK and benzophenone (DPK) were used as diluents to prepare a membrane with excellent mechanical strength and chemical stability using the thermally induced phase separation (TIPS) method to compensate for the shortcomings of PEEK membrane preparation and achieving the highest performances. The optimal membrane manufacturing conditions were confirmed through the crystallization temperature and cloud point according to the polymer content through the phase diagram. Subsequently, the morphological changes of the membrane, influenced by the polymer and diluent content, were confirmed through scanning electron microscopy (SEM). Additionally, the membrane thickness tended to increase with higher polymer content. Tensile strength and DI-water permeability tests were conducted to confirm the mechanical strength and permeability of the membrane. Through the previous characteristic evaluation, it was confirmed that the membrane using PEEK had excellent mechanical strength and permeability.

Microstructure Change and Mechanical Properties in Binary Ti-Al Containing Ti3Al

  • Oh, Chang-Sup;Woo, Sang-Woo;Han, Chang-Suk
    • Korean Journal of Materials Research
    • /
    • v.26 no.12
    • /
    • pp.709-713
    • /
    • 2016
  • Grain morphology, phase stability and mechanical properties in binary Ti-Al alloys containing 43-52 mo1% Al have been investigated. Isothermal forging was used to control the grain sizes of these alloys in the range of 5 to $350{\mu}m$. Grain morphology and volume fraction of ${\alpha}_2$ phase were observed by optical metallography and scanning electron microscopy. Compressive properties were evaluated at room temperature, 1070 K, and 1270 K in an argon atmosphere. Work hardening is significant at room temperature, but it hardly took place at 1070 K and 1270 K because of dynamical recrystallization. The grain morphologies were determined as functions of aluminum content and processing conditions. The transus curve of ${\alpha}$ and ${\alpha}+{\gamma}$ shifted more to the aluminum-rich side than was the case in McCullough's phase diagram. Flow stress at room temperature depends strongly on the volume fraction of the ${\alpha}_2$ phase and the grain size, whereas flow stress at 1070 K is insensitive to the alloy composition or the grain size, and flow stress at 1270 K depends mainly on the grain size. The ${\alpha}_2$ phase in the alloys does not increase the proof stress at high temperatures. These observations indicate that improvement of both the proof stress at high temperature and the room temperature ductility should be achieved to obtain slightly Ti-rich TiAl base alloys.

Effects of Preferential Diffusion on Downstream Interaction in Premixed $H_2$/CO Syngas-air Flames (상호작용하는 $H_2$-CO 예혼합 화염에서 $H_2$선호확산의 영향에 관한 수치적 연구)

  • Oh, Sanghoon;Park, Jeong;Kwon, Ohboong
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.3
    • /
    • pp.17-29
    • /
    • 2012
  • The effects of strain rate and preferential diffusion of $H_2$ on flame extinction are numerically studied in interacting premixed syngas-air flames with fuel compositions of 50% $H_2$ + 50% CO and 30% $H_2$ + 70% CO. Flame stability diagrams mapping lower and upper limit fuel concentrations at flame extinction as a function of strain rate are examined. Increasing strain rate reduces the boundaries of both flammable lean and rich fuel concentrations and produces a flammable island and subsequently even a point, implying that there exists a limit strain rate over which interacting flame cannot be sustained anymore. Even if effective Lewis numbers are slightly larger than unity on extinction boundaries, the shape of the lean extinction boundary is slanted even at low strain rate, i.e. $a_g=30s^{-1}$ and is more slanted in further increase of strain rate, implying that flame interaction on lean extinction boundary is strong and thus hydrogen (as a deficient reactant) Lewis number much less than unity plays an important role of flame interaction. It is also shown that effects of preferential diffusion of $H_2$ cause flame interaction to be stronger on lean extinction boundaries and weaker on rich extinction boundaries. Detailed analyses are made through the comparison between flame structures with and without the restriction of the diffusivities of $H_2$ and H in symmetric and asymmetric fuel compositions. The reduction of flammable fuel compositions in increase of strain rate suggests that the mechanism of flame extinction is significant conductive heat loss from the stronger flame to ambience.

Gas Hydrate BSR-derived Heat Flow Variations on the South Shetland Continental Margin, Antarctic Peninsula (가스수화물 BSR을 이용한 남극반도 남쉐틀랜드 대륙주변부의 지열류량 변화)

  • Jin, Young-Keun;Nam, Sang-Heon;Kim, Yea-Dong;Kim, Kyu-Jung;Lee, Joo-Han
    • Ocean and Polar Research
    • /
    • v.25 no.2
    • /
    • pp.201-211
    • /
    • 2003
  • Bottom simulating reflectors (BSR), representing the base of the gas hydrate stability field, are widespread on the South Shetland continental margin (SSM), Antarctic Peninsula. With the phase diagram fur the gas hydrate stability field, heat flow can be derived from the BSR depth beneath the seafloor determined on multichannel seismic profiles. The heat flow values in the study area range from $50mW/m^2$ to $85mW/m^2$, averaging to $65mW/m^2$. Small deviation from the average heat flow values suggests that heat flow regime of the study area is relatively stable. The landward decrease of heat flow from the South Shetland Trench to the continental shelf would be attributed to the landward thickening of the accretionary prism and the upward advection of heat associated with fluid expulsion. The continental slope 1500m to 3000m deep, where BSRs are most distinguished in the SSM, shows relatively large variation of heat flow possibly due to complex tectonic activities in the study area. The local high heat flow anomalies observed along the slope may be caused by heat transport mechanisms along a NW-SE trending large-scale fault.

Interfacial Features of Colloidal Particles in Aqueous Environment and Change in Its Stability According to Influential Conditions (수중 콜로이드성 고형물의 계면화학적 특성 및 영향 인자 조건에 따른 안정성의 변화)

  • Shin, Sung-Hye;Kim, Dong-Su
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.22 no.12
    • /
    • pp.2227-2238
    • /
    • 2000
  • The interfacial features of suspension system made of $CaCO_3$ particles have been investigated for the purpose of designing its effective treatment process. For the examination of variation of electrokinetic potential as a function of pH. the value of potential was observed to shift in the negative direction, which was thought to be due to the adsorption of hydroxide ion on the particle surface. Adsorption of surfactant on suspended particles resulted in the change of surface charge and shift in electrokinetic potential, which was dependent upon the sign of head charge and concentration of surfactant. Addition of inorganic salts affected stability of suspension greatly and sedimentation rate of suspension was influenced by the electric valence and amount of ions produced by dissolution of inorganic coagulants. DLVO theory made it possible to construct a energy profile diagram and a close correlation was found between experimental result and theoretically derived consequences. Non-specific adsorption of indifferent electrolyte resulted in the compression of electrical double layer and specific adsorption induced the shift of IEP and PZC in the opposite direction.

  • PDF

The Behavior of Sheet Piling Walls supported by Anchors in Soft Ground (연약지반에 설치된 앵커지지 강널말뚝 흙막이벽의 거동)

  • 홍원표;송영석;김동욱
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.4
    • /
    • pp.65-74
    • /
    • 2004
  • Based on the field measuring data obtained from seven excavation sections in Inchon International Airport Project, the horizontal displacement of sheet piling walls supported by anchors and the lateral earth pressure acting on sheet piling walls was investigated in soft ground. The proposed diagram of lateral earth pressure is a rectangular form, and the maximum earth pressure corresponds to $0.6\gamma H$. The maximum earth pressure is similar to the empirical earth pressure proposed by NAVFAC(1982). The quantitative safe criterion of sheet piling walls with struts is established from the relationships between increasing velocity of maximum horizontal displacement and stability number in excavated ground. If the velocity of maximum horizontal displacement shows lower than 1mm per day, the sheet piling walls exist under stable state. When the velocity of maximum horizontal displacement becomes more than 1mm and less than 2mm per day, excavation works should be observed with caution. Also, when the velocity of maximum horizontal displacement becomes more than 2mm per day, appropriate remediations and reinforcements are applied to sheet piling walls.

The Analysis of Flow-Induced Vibration and Design Improvement in KSNP Steam Generators of UCN #5, 6

  • Kim, Sang-Nyung;Cho, Yeon-Sik
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.74-81
    • /
    • 2004
  • The KSNP Steam Generators (Youngkwang Unit 3 and 4, Ulchin Unit 3 and 4) have a problem of U-tube fretting wear due to Flow Induced Vibration (FIV). In particular, the wear is localized and concentrated in a small area of upper part of U-bend in the Central Cavity region. The region has some conditions susceptible to the FIV, which are high flow velocity, high void fraction, and long unsupported span. Even though the FIV could be occurred by many mechanisms, the main mechanism would be fluid-elastic instability, or turbulent excitation. To remedy the problem, Eggcrate Flow Distribution Plate (EFDP) was installed in the Central Cavity region or Ulchin Unit 5 and 6 steam generators, so that it reduces the flow velocity in the region to a certain level. However, the cause of the FIV and the effectiveness of the EFDP was not thoroughly studied and checked. In this study, therefore the Stability Ratio (SR), which is the ratio of the actual velocity to the critical velocity, was compared between the value before the installation of EFDP and that after. Also the possibility of fluid-elastic instability of KSNP steam generator and the effectiveness of EFDP were checked based on the ATHOS3 code calculation and the Pettigrew's experimental results. The calculated results were plotted in a fluid-elastic instability criteria-diagram (Pettigrew, 1998, Fig. 9). The plotted result showed that KSNP steam generator with EFDP had the margin of Fluid-Elastic Instability by almost 25%.

Simulation on the Distribution of Vanadium- and Iron-Picolinate Complexes in the Decontamination Waste Solution (제염 폐액에서 바나듐- 및 철-피콜리네이트 착화물의 평형분배 모사)

  • Shim, Joon-Bo;Oh, Won-Zin;Kim, Jong-Duk
    • Korean Chemical Engineering Research
    • /
    • v.43 no.1
    • /
    • pp.33-38
    • /
    • 2005
  • The distribution of vanadium and iron ionic species in the presence of picolinate ligand has been simulated at various conditions with different pH values and compositions in the decontamination waste solution. In spite of variations of metal concentration in the decontamination solution, the shape of distribution diagrams were not changed greatly at both high (the molar ratio of picolinate to vanadium is 6) and low (the molar ratio is 3) LOMI decontamination conditions. However, in the solution of low-picolinate condition the shape of the distribution diagram of iron(II)-picolinate complexes was changed significantly. This phenomenon is attributed to the shortage of relative amount of picolinate ligand to iron existed in the solution, and originated from the difference in stability constants for complexes formed between vanadium(III) and iron(II) species with picolinate ligand. The distribution diagrams obtained in this study can be applied very usefully to the prediction or understanding the reaction phenomena occurred at various conditions in the course of the LOMI waste treatments such as an ion exchange operation.