• Title/Summary/Keyword: Stability calculation

Search Result 656, Processing Time 0.026 seconds

An Efficient Improvement of the Iterative Eigenvalue Calculation Method and the Selection of Initial Values in AESOPS Algorithm (AESOPS 알고리즘의 고유치 반복계산식과 고유치 초기값 선정의 효율적인 개선에 관한 연구)

  • Kim, Deok-Young;Kwon, Sae-Hyuk
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.11
    • /
    • pp.1394-1400
    • /
    • 1999
  • This paper presents and efficient improvement of the iterative eigenvalue calculation method and the selection of initial values in AESOPS algorithm. To determine the initial eigenvalues of the system, system state matrix is constructed with the two-axis generator model. From the submatrices including synchronous and damping coefficients, the initial eigenvalues are calculated by the QR method. Participation factors are also calculated from the above submatrices in order to determine the generators which have a important effect to the specific oscillation mode. Also, the heuristically approximated eigenvalue calculation method in the AESOPS algorithm is transformed to the Newton Raphson Method which is largely used in the nonlinear numerical analysis. The new methods are developed from the AESOPS algorithm and thus only a few calculation steps are added to practice the proposed algorithm.

  • PDF

Real-time estimation of arc stability in GMAW process (GMAW 공정에서 아크 안정성의 실시간 측정)

  • 원윤재;부광석;조형석
    • Journal of Welding and Joining
    • /
    • v.8 no.1
    • /
    • pp.31-42
    • /
    • 1990
  • Arc must be stable during welding first of all other factors for obtaining sound weldment, especially in the automation of welding process. Arc stability is somewhat sophisticated phenomenon which is not clearly defined yet. In consumable electrode welding, the voltage and current variation due to metal transfer enables to assess arc stability. Recently, statistical analyses of the voltage and current waveform factors are performed to assess the degress of arc stability which is assessed and controlled by operator's own experience by now. But, considering the increasing need and the trend of automation of welding process, it is necessary to monitor arc stability in real-time. In this sutdy, the modified stability index composed of two voltage and current wvaeform factors (arc time and short circuit time) reduced from four factors (arc time, short circuit time, average arc current and average short circuit current) in Mita's index by the welding electrical circuit modeling is proposed and verified by experiments to be well estimating arc stability in the static sense. Also, the recursive calculation form estimating present arc stability in the dynamic sense is developed for real-time estimation. The results of applying the recursive index during welding show good estimation of arc stability in real-time. Therefore, the results of this study offers the mean for real-time control arc stability.

  • PDF

Borehole stability analysis in oil and gas drilling in undrained condition

  • Wei, Jian-Guang;Yan, Chuan-Liang
    • Geomechanics and Engineering
    • /
    • v.7 no.5
    • /
    • pp.553-567
    • /
    • 2014
  • Borehole instability during drilling process occurs frequently when drilling through shale formation. When a borehole is drilled in shale formation, the low permeability leads to an undrained loading condition. The pore pressure in the compressed area near the borehole may be higher than the initial pore pressure. However, the excess pore pressure caused by stress concentration was not considered in traditional borehole stability models. In this study, the calculation model of excess pore pressure induced by drilling was obtained with the introduction of Henkel's excess pore pressure theory. Combined with Mohr-Coulumb strength criterion, the calculation model of collapse pressure of shale in undrained condition is obtained. Furthermore, the variation of excess pore pressure and effective stress on the borehole wall is analyzed, and the influence of Skempton's pore pressure parameter on collapse pressure is also analyzed. The excess pore pressure decreases with the increasing of drilling fluid density; the excess pore pressure and collapse pressure both increase with the increasing of Skempton's pore pressure parameter. The study results provide a reference for determining drilling fluid density when drilling in shale formation.

Camber calculation of prestressed concrete I-Girder considering geometric nonlinearity

  • Atmaca, Barbaros;Ates, Sevket
    • Computers and Concrete
    • /
    • v.19 no.1
    • /
    • pp.1-6
    • /
    • 2017
  • Prestressed concrete I-girders are subject to different load types at their construction stages. At the time of strand release, i.e., detensioning, prestressed concrete girders are under the effect of dead and prestressing loads. At this stage, the camber, total net upward deflection, of prestressed girder is summation of the upward deflection due to the prestressing force and the downward deflection due to dead loads. For the calculation of the upward deflection, it is generally considered that prestressed concrete I-girder behaves linear-elastic. However, the field measurements on total net upward deflection of prestressed I-girder after detensioning show contradictory results. In this paper, camber calculations with the linear-elastic beam and elastic-stability theories are presented. One of a typical precast I-girder with 120 cm height and 31.5 m effective span length is selected as a case study. 3D finite element model (FEM) of the girder is developed by SAP2000 software, and the deflections of girder are obtained from linear and nonlinear-static analyses. Only geometric nonlinearity is taken into account. The material test and field measurement of this study are performed at prestressing girder plant. The results of the linear-elastic beam and elastic-stability theories are compared with FEM results and field measurements. It is seen that the camber predicted by elastic-stability theory gives acceptable results than the linear-elastic beam theory while strand releasing.

Comparative Study on Seismic Design of Soil-Reinforced Segmental Retaining Walls (블록식 보강토 옹벽의 내진설계에 관한 비교연구)

  • 유충식
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.4
    • /
    • pp.51-61
    • /
    • 2000
  • This paper reviews fundamentals of a pseudo-static seismic design/analysis method for soil-reinforced segmental retaining walls. A comparative study on NCMA and FHWA seismic design guidelines, which are one of the most well known design guidelines for mechanically stabilized earth walls, was also performed. The results demonstrate that there exist significant discrepancies in the results of external stability analysis despite the same calculation model used in the two guidelines, due primarily to different seismic coefficient selection criteria. It is also demonstrated that the internal stability calculation model for NCMA guideline tends to yield larger seismic reinforcement force in the shallower reinforcement layers, resulting in an increased number of reinforcement layers at the top of reinforced wall and increased reinforcement lengths to ensure adequate anchorage capacity. The internal stability calculation model adopted by FHWA guideline, however, leads to redistribution of dynamic force to the lower reinforcement layers and thus results n an opposite trend of NCMA guideline. Findings from this study clearly demonstrate a need for more in-depth studies to develop a generally acceptable design/analysis method.

  • PDF

A Novel Method for Clustering Critical Generator by using Stability Indices and Energy Margin (안정도 지수와 에너지 마진을 이용한 불안정 발전기의 clustering 법)

  • Chang Dong-Hwan;Jung Yun-Jae;Chun Yeonghan;Nam Hae-Kon
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.9
    • /
    • pp.441-448
    • /
    • 2005
  • On-line dynamic security assessment is becoming more and more important for the stable operation of power systems as load level increases. The necessity is getting apparent under Electricity Market environments, as operation of power system is exposed to more various operating conditions. For on-line dynamic security assessment, fast transient stability analysis tool is required for contingency selection. The TEF(Transient Energy Function) method is a good candidate for this purpose. The clustering of critical generators is crucial for the precise and fast calculation of energy margin. In this paper, we propose a new method for fast decision of mode of instability by using stability indices. Case study shows very promising results.

Compressible Parabolized Stability Equation in Curvilinear Coordinate System and integration

  • Gao, Bing;Park, S.O.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.155-174
    • /
    • 2006
  • Parabolized stability equations for compressible flows in general curvilinear coordinate system are derived to deal with a broad range of transition prediction problems on complex geometry. A highly accurate finite difference PSE code has been developed using an implicit marching procedure. Compressible and incompressible flat plate flow stability under two-dimensional and three¬dimensional disturbances has been investigated to test the present code. Results of the present computation are found to be in good agreement with the multiple scale analysis and DNS data. Stability calculation results by the present PSE code for compressible boundary layer at Mach numbers ranging from 0.02 to 1.5 are also presented and are again seen to be as accurate as the spectral method.

Stability Analysis of a Biped Robot using FRI (FRI를 이용한 이족 보행 로봇의 안정도 해석)

  • 김상범;최상호;김종태;박인규;김진걸
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.574-577
    • /
    • 2001
  • This paper presents the comparison of FRI(Foot Rotation Indicator) point and ZMP(Zero Moment Point) in biped robot stability. We showed FRI may be employed as a useful tool in stability analysis in biped robot. Also, we proposed the balancing joint trajectory derived from FRI point equation for stable gait. The numerical calculation routines and walking algorithms for simulation are performed by MATLAB. The procedure is composed of the leg trajectory planning, the generation of balancing trajectory, and the verification of dynamic stability.

  • PDF

Voltage Stability Analysis considering Static Voltage Dependent Load Model and Loss Redistribution (손실재분배와 정적전압의존형 부하모델을 고려한 전압안정도 해석)

  • Kim, K.S.;Chae, M.S.;Shin, J.R.;Lim, H.S.
    • Proceedings of the KIEE Conference
    • /
    • 1997.11a
    • /
    • pp.215-217
    • /
    • 1997
  • In many conventional analysis of voltage stability the effect of load characteristics is ignored. But in the real system the load is composed of various components. Therefore if the load composition could be modeled then it will plays an important role in the analysis of static voltage stability. And also, if the system loss generally imposed to slack bus in the conventional load flow calculation is redistributed to each generator the accuracy of static voltage stability analysis can be improved. This paper presents the effect of load composition in the analysis of system stability as well the loss redistribution algorithm. And this paper will compare the result of conventional method with that of the proposed method.

  • PDF