• 제목/요약/키워드: Stability Improvement

검색결과 1,927건 처리시간 0.034초

겹판스프링댐퍼를 이용한 저어널베어링의 안정성 향상에 관한 실험적연구 (An Experimental Study on Improvement of the Stability of Plane Journal Bearing using Leaf Spring Damper)

  • 최영준;김종수;제양규
    • Tribology and Lubricants
    • /
    • 제17권3호
    • /
    • pp.185-190
    • /
    • 2001
  • The purpose of present paper is to prove an improvement on stability of plane journal bearing due to the leaf spring damper (LSD) experimentally. A flexible rotor system is designed and manufactured, in order to generate oil whip instability of journal bearing at relative lower rotating speed. Vibration amplitude and instability onset speeds are investigated for a conventional plane journal bearing and plane journal bearing with LSD. To investigate the damping effects of LSD on stability of bearing, experiments are also conducted on the leaf spring dampers with and without working oil. It is found that the leaf spring damper can considerably increase the instability onset speed of a plane Journal bearing.

층간소음저감재 장기 내구성 평가를 위한 가열시험의 문제점 및 개선방안에 관한 연구 (A study on the improvement method of heat treatment condition for the long-term stability evaluation in the floor impact isolator)

  • 박연준;이찬규
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.238-243
    • /
    • 2011
  • This study compared Kd, loss factor and thickness of floor impact isolator by loading/unloading heat treatment with results by continuous loading treatment and checked problem and improvement method of heat treatment condition for the long-term stability evaluation of the floor impact isolation. As the results, it is required the change of heat treatment condition unloading now to loading as actual weigh on the floor impact isolator.

  • PDF

In-wheel motor 차량의 yaw 안정성 향상을 위한 scheduler 설계 (Scheduler design for yaw stability improvement of in-wheel motor vehicle)

  • 한인재;김진성;권오신;허훈
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2011년도 춘계학술대회 논문집
    • /
    • pp.212-217
    • /
    • 2011
  • A scheduling technique for the improvement of yaw motion stability in in-wheel motor vehicle is proposed. Normally vehicle velocity is controlled via conventional PID method. When vehicle is encountered with different road conditions on left and right hand sides, unstable yaw motion is induced due to the driving force difference in both wheels. In this paper a scheduling formular for control gain is derived in terms of experimental results to generate proper counter control action. Simulation result reveals its effective performance in yaw control of in-wheel vehicle.

  • PDF

A Controller Design for a Stability Improvement of an On-Board Battery Charger

  • Jeong, Hae-Gwang;Lee, Kyo-Beum
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권4호
    • /
    • pp.951-958
    • /
    • 2013
  • This paper proposes the controller design for a stability improvement of an on-board battery charger. The system is comprised of a power factor correction (PFC) circuit and phase shift full-bridge DC-DC converter. The PFC circuit performs the control of the DC-link voltage and the input power factor. The DC-DC converter regulates the voltage and the current in the battery using the DC-link voltage. This paper proposes the design method of PI controller for the PFC circuit using a small signal model. The analysis and design of a type-three controller for the DC-DC converter is also presented. A simulation and experiment has been performed on the on-board battery charger and their results are presented to verify the validity of the proposed system.

차량 안정성 제어 시스템의 모듈레이터 성능개선 및 단순화에 관한 연구 (A Study on the Performance Improvement and Simplification of the Modulator for Vehicle Stability Control System)

  • 이종찬;송창섭
    • 한국정밀공학회지
    • /
    • 제21권6호
    • /
    • pp.84-93
    • /
    • 2004
  • This study carries out the performance improvement and simplification of hydraulic modulator that plays an important role in vehicle stability control systems. The mathematical models for each component of a modulator, such as pump, wheel cylinder, check and solenoid valve, accumulator, damper are derived in detail. All the mathematical models are combined to form a modulator system and implemented through a computer program, which can be controlled by a user friendly GUI. To verity the simulation, comparison between simulation and experiments has been made. After the verification of the validity of the simulation, the effects of the design parameters of the modulator on the wheel cylinder pressure is investigated. The results show that the modulator without MPA has advantage in early time pressure rise rate, and it can be simplified.

Stability improvement for response attenuation of bridge columns with one dimensional meta-material based isolation systems

  • Saumitra Jain;Sumiran Pujari;Arghadeep Laskar
    • Earthquakes and Structures
    • /
    • 제24권3호
    • /
    • pp.193-204
    • /
    • 2023
  • The concept of meta-material-based isolation systems (MMIS) for structural columns has been revisited in the present study in order to enhance the stability of rubber pads by using steel shim reinforced rubber (SSRR) layers. Analytical calculations have shown a significant improvement in the stability of MMIS with SSRR pads. Finite element analysis has also been conducted to further show the reduced response of a bridge with the modified MMIS under excitations having frequencies within the corresponding attenuation zone (AZ) as compared to the response of a conventional bridge without MMIS. FE analysis further shows the stress generated on the bridge with MMIS systems are within safe limits. Finally, a generalized procedure has been developed to design bridge columns with the proposed modified MMIS.

Stability of rectangular tunnel in improved soil surrounded by soft clay

  • Siddharth Pandey;Akanksha Tyagi
    • Geomechanics and Engineering
    • /
    • 제34권5호
    • /
    • pp.491-505
    • /
    • 2023
  • The practical usage of underground space and demand for vehicular tunnels necessitate the construction of non-circular wide rectangular tunnels. However, constructing large tunnels in soft clayey soil conditions with no ground improvement can lead to excessive ground deformations and collapse. In recent years, in situ ground improvement techniques such as jet grouting and deep cement mixing are often utilized to perform cement-stabilisation around the tunnel boundary to prevent large deformations and failure. This paper discusses the stability characteristics and failure behaviour of a wide rectangular tunnel in cement-treated soft clays. First, the plane strain finite element model is developed and validated with the results of centrifuge model tests available in the past literature. The critical tunnel support pressures computed from the numerical study are found to be in good agreement with those of centrifuge model tests. The influence of varying strength and thickness of improved soil surround, and cover depth are studied on the stability and failure modes of a rectangular tunnel. It is observed that the failure behaviour of the tunnel in improved soil surround depends on the ratio of the strength of improved soil surround to the strength of surrounding soil, i.e., qui/qus, rather than just qui. For low qui/qus ratios,the stability increases with the cover; however, for the high strength improved soil surrounds with qui >> qus, the stability decreases with the cover. The failure chart, modified stability equation, and stability chart are also proposed as preliminary design guidelines for constructing rectangular tunnels in the improved soil surrounded by soft clays.

Voltage Stability Enhancement by Optimal Placement of UPFC

  • Kowsalya, M.;Ray, K.K.;Shipurkar, Udai;Saranathan
    • Journal of Electrical Engineering and Technology
    • /
    • 제4권3호
    • /
    • pp.310-314
    • /
    • 2009
  • This paper presents the improvement of the voltage profiles of power system networks by the inclusion of Unified Power Flow Controller (UPFC). The mathematical model of the UPFC is incorporated in the load flow algorithm and the L-index is calculated for the different values of the control parameter r $and{\gamma}$. The positioning of the UPFC device is changed to minimize the sum of the squares of the L-indices at all load buses. The test cases considered for the improvement of voltage profile with the WSCC 9-bus and IEEE 30 bus system. With the best position of UPFC along with the control parameters the improvement in voltage profile of the power system networks are obtained. The results obtained are quite encouraging compared with other techniques used to identify the best location of UPFC.

방위력개선사업비 편성.확보의 합리성과 안정성 제고방안 -국방중기계획 연부액의 편성 및 확보방안을 중심으로- (A Study on Improvement of Rationality and Stability of Allocation and Procurement of Defense Capability Improvement Cost -Focused on the Yearly Allocation and Procurement of Mid-Term Defense Plan-)

  • 최준혁;이필중
    • 한국국방경영분석학회지
    • /
    • 제34권1호
    • /
    • pp.117-135
    • /
    • 2008
  • 현재 세계 각국은 탈냉전 이후 격변하는 안보환경 속에서 생존을 위한 다양한 도전에 직면해 있다. 이에 한국군도 '국방개혁 2020'을 통한 첨단 정보과학군으로의 변모를 죄하고 있으며, 이는 필연적으로 새로운 군사력 소요를 창출하게 되었다. 그리고 이와 같은 군사력 건설의 성공적인 추진을 위해 방위산업 및 국방예산의 중요성은 더욱 증대되었다. 하지만 현재 한국의 방위산업은 심각한 어려움을 겪고 있으며, 더욱이 방위력개선사업비의 낮은 합리성 안정성은 이러한 실태를 더욱 악화시켜 왔다. 이와 같은 상황에서 한국 방위산업의 발전과 한국군 군사력 소요의 적기 충족을 위해서는 방위력개선사업비의 합리성 안정성 제고방안 강구가 시급하다. 따라서 본 연구의 목적은 한국 방위력개선사업 비의 합리성 안정성 제고를 위한, 방위력개선사업분야 국방중기계획의 연부액 편성체계 개선 및 국가재정운용계획과 국방중기계획의 연계 강화방안을 제시하는 데 있다. 한국 국방목표의 성공적 달성을 위해 국방중기계획의 연부액 편성체계 개선을 통해 방위력개선사업비의 합리성을 제고하고 안정성 제고를 위해 이를 국가재정운용계획과 연계시켜 최근 국가재정법 발효 등으로 변화가 불가피한 한국의 국방예산 편성체계에서 방위력개선사업비의 시기적절한 변화를 도모하고자 한다.

A Study on Adaptive Autoreclosure Scheme with Real-time Transient Stability

  • Jang Sung-Ik;Shin Myong-Chul;Yoon Chang-Dae;Campbell Ryan C.
    • Journal of Electrical Engineering and Technology
    • /
    • 제1권1호
    • /
    • pp.8-15
    • /
    • 2006
  • Since the power swing depends on the operating time of the relay, the swing's magnitude can be reduced by an autoreclosure relaying system with an optimal reclosing algorithm. This paper proposes a method for stability improvement using optimal reclosure relaying. An optimal reclosure algorithm is applied to identify both temporary and permanent faults, and to predict system stability by applying WAM and high speed communication technology. It provides optimal control by predicting and determining the degree of stability, considering the real time transient stability using EEEAC. For temporary faults, the algorithm determines the system's stability and either recloses optimally for stable systems, or inserts series capacitance before optimal reclosure for unstable systems. It also applies an optimal reclosure algorithm to minimize shock and damage to the power system when reclosure fails due to permanent faults.