• Title/Summary/Keyword: Stability Area

Search Result 2,286, Processing Time 0.041 seconds

A Study of Attitude Control and Stability Analysis Using D-Decomposition Stability Area Technique for Launch Vehicle (안정성 영역(Stability Area) 판별법을 이용한 발사체 자세제어 이득 설계 및 자세 안정성 분석)

  • Park, Yong-Kyu;Sun, Byung-Chan;Roh, Woong-Rae;Oh, Choong-Seok
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.37 no.6
    • /
    • pp.537-544
    • /
    • 2009
  • This paper concerns analysis technique on determining of attitude control gain in the low frequency region using stability area. The stability area is defined by the D-Decomposition method, which was designed by Neimark. In this paper, it is introduced D-Decomposition method from reference paper and design attitude control gain of generic launch vehicle during first stage flight phase. For selecting PD control gain, it is considered the system parameter uncertainty about whole first-stage flight phase, represented the stability area boundary on each case. After deciding the PD control gain using stability area method, it is applied to launch vehicle linear model, and checking the stability margin requirement, frequency response characteristics.

Analysis of Slope Stability Using GIS in the Northern Area of Chungju Lake (지구정보시스템을 이용한 충주호 북부 지역의 사면 안정 평가)

  • 문상기
    • Economic and Environmental Geology
    • /
    • v.33 no.1
    • /
    • pp.51-59
    • /
    • 2000
  • As a part of natural hazard assessment, regional slope stability analysis was conducted using Geoscientific Information System (GIS) in the northern area of Chungju Lake. Selected factors which affect the slope stability in the study area were lithology, soil, density of lineament, groundwater level, dip of slope, aspect of slope, and geological engineering properties. Geological structural domains were determined by collected data of joint orientation from about 200 sites in order to produce a slope instability map. Potential type of failure and its direction could be expected through the domains. And a slope instability map was produced, comparing the representative orientations of the domains with the orientations of the slopes which were made through TIN module in ARC/INFO. Under the consideration of environmental geological characteristics of the study area, rating and weighting of each factor of slope stability analysis were decided and spatial analysis of regional slope stability was couducted through overlaying technique of GIS. The result of areal distribution of slope stability showed that the most unstable area was the area between Mt. Pudae and Mt. Jubong, and the northern area of the railway station, Samtan.

  • PDF

Study on the comparison topographical factor with slope stability using fractal dimension and surface area index (프랙탈 차원과 표면적 지수를 이용한 지형인자와 사면안정성 비교 연구)

  • Noh, Soo-Kack;Chang, Pyoung-Wuck;Cha, Kyung-Seob
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.387-392
    • /
    • 2005
  • The research was performed to predict the potential landslide with roughness index. It was known that fractal dimension and surface area index can be represented the topography, specially when the natural slopes were rough or rugged. A test site was selected and fractal dimension and surface area index were calculated from the irregular triangle network. Fractal dimension were ranged between $2.016{\sim}2.046$ and surface area index $1.56E+07{\sim}2.59E+07$. Surface area index increased as fractal dimension increased. Slope stability was calculated by infinite slope stability analysis model and was compared to slope stability by fractal and surface area index. In the result, unsafe zones where slope stability is under 1.1 were $5.11{\sim}6.25%$ for the test site. It can be said that fractal dimension and surface area index are a good index to evaluate the slope stability because when fractal dimension and surface area index are greater, then stability of the site is more unsafe.

  • PDF

Real Time Wide Area Voltage Stability Index in the Korean Metropolitan Area

  • Han, Sang-Wook;Lee, Byong-Jun;Kim, Sang-Tae;Moon, Young-Hwan
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.4
    • /
    • pp.451-456
    • /
    • 2009
  • Through the development of phasor measurement units (PMU), various aspects of power system dynamic behavior could be monitored and diagnosed. Monitoring dynamic voltage stability has become one of the achievements we can obtain from PMUs. It is very important to select the most appropriate method for the Korea Electric Power Corporation (KEPCO) system since there are many voltage stability indices. In this paper, we propose an advanced WAVI (Wide Area Voltage Stability) that is well suited for the purposes of monitoring the dynamic voltage stability of KEPCO's PMU installation plan. The salient features of the proposed index are: i) it uses only PMU measurements without coupling with EMS data; ii) it is computationally unburdened and can be applied to real-time situations. The proposed index is applied to the KEPCO test system and the results show that it successfully predicts voltage instability through comparative studies.

Regional Evaluation of Slope Stability by Using GIS and Geostatistics Around the Southern Area of Chungju Lake (GIS와 지구통계학을 이용한 충주호 남부지역의 광역적인 사면안정평가)

  • 문상기
    • Economic and Environmental Geology
    • /
    • v.33 no.2
    • /
    • pp.117-128
    • /
    • 2000
  • Regional evaluations of slope stability by the failure criterion and by environmental geological factors were conducted. The failure criterion is the general conditions for plane failure which consider the geometrical conditions between geological discontinuities and topographical slope planes. The factor focused in this condiction is dip and dip direction. Geostatics, named semivariogram was used for establishing structural domains in slope stability evaluation by the failure criterion. The influential range was calculated to 6 km in the case of dip direction of dominant joint set and 7 km in the case of dip of the same dominant joint set. Then applying this failure criterion to the study area produced a slope stability map using the established domains and slopes generated by TIN module of ARC/INFO GIS. This study considered another regional slope stability analysis. 5 failure-driven factors 9the unstable slope map, geology, engineering soil, groundwater, and lineament density) were selected and used as data coverages for regional slope stability evaluation by geoenvironmental factors. These factors were weighted and overlayed in GIS. From the graph of cumulatave area (%) and instability index, finding critical points classified the instability indices. The most unstable slopes are located in the southern area of Mt. Eorae, Dabul-ri, and the eastern area of Junkok-ri in the first area is plane failure. Also, the expected orientations of failure are 59/338 and 86/090 (dip/dip direction).

  • PDF

Analysis of Slope Stability by Using Remote Sensing and GIS Around Chungju Area (원격탐사와 지구정보시스템을 이용한 충주지역의 사면안정분석)

  • Shin, Hyunjun;Lee, Younghoon;Min, Kyungduck;Won, Joongsun;Kim, Younjong
    • Economic and Environmental Geology
    • /
    • v.29 no.5
    • /
    • pp.615-622
    • /
    • 1996
  • Slope stability analysis was conducted using remote sensing and Geoscientific Information System (GIS) as a part of natural hazard assessment around Chungju area. Landsat TM band 5 and 7 which contain more information about geological structure and geography are chosen and processed to analyse regional geological structure. Through image processing technique such as PCA, HFF, edge detection and enhancement, regional lineament can be mapped and identified. The lineament density map is constructed based on summed length of lineaments per unit area and the study area can be divided into 7 structural domains. Various factors of slope stability analysis such as geology, slope aspect, degree of slope, landcover, water shed as well as characterized structural domain are constructed as a database of GIS. Rating and weighting of each factor for slope stability analysis is decided by considering environmental geological characteristics of study area. Spatial analysis of regional slope stability is examined through overlaying technique of the GIS. The result of areal distribution of slope stability shows that the most unstable area is all over Jaeogae-ni, Hyangsan-ni and Mt. Daedun.

  • PDF

Generation Dispatch Algorithm Applying a Simulation Based Optimization Method (시뮬레이션 기반 최적화 기법을 적용한 발전력 재분배 알고리즘)

  • Kang, Sang-Gyun;Song, Hwachang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.1
    • /
    • pp.40-45
    • /
    • 2014
  • This paper suggests the optimal generation dispatch algorithm for ensuring voltage stability margin considering high wind energy injection. Generally, with wind generation being installed into the power system, we would have to consider several factors such as the voltage stability margin because wind turbine generators are mostly induction machines. If the proportion of wind generation increases in the power system increases this would affect the overall stability of the system including the voltage stability. This paper considers a specific system that is composed of two areas: area 1 and area 2. It is assumed that generation cost in area 1 is relatively higher than that in area 2. From an economic point of view generation in area 1 should be decreased, however, in the stability point of view the generation in area 2 should be decreased. Since the power system is a nonlinear system, it is very difficult to find the optimal solution and the genetic algorithm is adopted to solve the objective function that is composed of a cost function and a function concerned with voltage stability constraints. For the simulations, the New England system was selected. The algorithm is implemented and Python 2.5.

A Voltage Stability Monitoring Algorithm using a Few PMUs in Metropolitan Area (한정된 위치의 PMU 정보를 이용한 수도권 전압안정도 감시 알고리즘)

  • Han, Sang-Wook;Lee, Byong-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2328-2334
    • /
    • 2009
  • Through the development of phasor measurement units (PMU), various aspects of power system dynamic behavior could be monitored and diagnosed. Monitoring dynamic voltage stability becomes one of achievements we can obtain from PMUs. It is very important to select the method appropriate to the KEPCO system since there are many voltage stability indices. In the paper, we propose an advanced WAVI (Wide Area Voltage Stability) for monitoring dynamic voltage stability. It reflects the PMU installation plan of KEPCO, thus it is suitable for KEPCO system specially. The salient features of the proposed index are; i) it uses only PMU measurements without coupling with EMS data. ii) it is computationally unburden so that it can be applied to real-time situation. The proposed index is applied to the KEPCO test system and the result shows that it successfully predicts voltage instability through the comparative studies.

Analysis of Slope Stability by Using Remote Sensing and GIS in Ichon Basin (원격탐사와 지구정보시스템 (GIS)을 이용한 이천분지의 사면안정평가)

  • Won, Jong Suck;Lee, Young-Hoon
    • Economic and Environmental Geology
    • /
    • v.30 no.3
    • /
    • pp.241-248
    • /
    • 1997
  • In this study, Ichon basin is selected as study area and regional analysis of geological structure are done by using lineament analysis. The factors which affects slope stability, are chosen, and integrated to database using GIS (Geoscientific Information System). Landsat TM band 4, 5 and 7 are choosen and processed by various image enhancement technique to analyse the regional geological lineaments. Spatial distribution of lineament is analysed through lineament density map and study area can be divided the eight structural domains. Considering environmental geological characteristics of study area, rating and weighting of each factors for slope stability analysis are determined and spatial analysis of regional slope stability is examined through overlaying technique of GIS. The result of areal distribution of slope stability shows that the most unstable area is all over Mt. Buksung, Mt. Daepo, Mt. Songrim and Mt. Yankak.

  • PDF

A Method of Vulnerable Area Selection for Voltage Stability Using the Variation Rate of Reactive Power Margin (무효전력 여유변화를 이용한 전압안정성 취약지역 선정)

  • Cho, Yoon-Hyun;Seo, Sang-Soo;Lee, Byong-Jun;Kim, Tae-Kyun;Choo, Jin-Boo
    • Proceedings of the KIEE Conference
    • /
    • 2003.11a
    • /
    • pp.251-254
    • /
    • 2003
  • A voltage stability assessment consists of the contingency screening, voltage stability analysis, and counter measures. A widely used index for the voltage stability assessment of power system is the reactive power margin. It shows some factors of voluntariness as following the status of power system and load levels for the target analyzing area. Therefore, it has a demerit that the absolute amounts of reactive power margin is not to be applied by the quantized margin criterion. This paper selects a vulnerable area by assigning the voltage instability for the particular contingency for the selection of vulnerable area in the respect of the investigation of reactive power margin or VQVI as an index of V-Q margin sensitivity in order to overcome the demerit. This will be able to grasp the V-Q margin sensitivity for the target analyzing area by presenting the ratio of power margin between the margin before and after contingency as following the calculation of reactive power margin. The presented method is applied to the voltage stability assessment for the Metropolitan area of 2003 KEPCO summer peak system.

  • PDF