• Title/Summary/Keyword: Src Kinase

Search Result 80, Processing Time 0.021 seconds

The Human PTK6 Interacts with a 23-kDa Tyrosine-Phosphorylated Protein and is localized in Cytoplasm in Breast Carcinoma T-47D Cells

  • Bae, Joon-Seol;Lee, Seung-Thek
    • BMB Reports
    • /
    • v.34 no.1
    • /
    • pp.33-38
    • /
    • 2001
  • The human PTK6 (also known as Brk) polypeptide, which is deduced from its full-length cDNA, represents a non-receptor protein tyrosine kinase (PTK). It contains SH3, SH2, and tyrosine kinase catalytic domains that are closely related to Src family members. We generated an antihuman PTK6 antibody by immunizing rabbits with a PTK6-specific oligopeptide conjugated to BSA, which corresponds to 11 amino acid residues near the C-terminus. An immunoblot analysis with the antibody detected an expected 52-kDa band in various mammalian transformed cell lines. Immunoprecipitation and immunoblot analyses demonstrated that PTK6 is phosphorylated on the tyrosine residues) and interacts with approximately a 23-kDa tyrosine-phosphorylated polypeptide (most likely a substrate of PTK6) in breast carcinoma T-47D cells. An immunofluorescence analysis demonstrated that PTK6 is localized throughout the cytoplasm of T-47D cells. These results support a possible role for PTK6 in the intracellular signal transduction through tyrosine phosphorylation.

  • PDF

Purification and Spectroscopic Characterization of the Human Protein Tyrosine Kinase-6 SH3 Domain

  • Koo, Bon-Kyung;Kim, Min-Hyung;Lee, Seung-Taek;Lee, Weon-Tae
    • BMB Reports
    • /
    • v.35 no.3
    • /
    • pp.343-347
    • /
    • 2002
  • The human protein tyrosine kinase-6 (PTK6) polypeptide that is deduced from the cDNA sequence contains a Src homology (SH) 3 domain, SH2 domain, and catalytic domain of tyrosine kinase. We initiated biochemical and NMR characterization of PTK6 SH3 domain in order to correlate the structural role of the PTK6 using circular dichroism and heteronuclear NMR techniques. The circular dichroism data suggested that the secondary structural elements of the SH3 domain are mainly composed of $\beta$-sheet conformations. It is most stable when the pH is neutral based on the pH titration data. In addition, a number of cross peaks at the low-field area of the proton chemical shift of the NMR spectra indicated that the PTK6 SH3 domain retains a unique and folded conformation at the neutral pH condition. For other pH conditions, the SH3 domain became unstable and aggregated during NMR measurements, indicating that the structural stability is very sensitive to pH environments. Both the NMR and circular dichroism data indicate that the PTK6 SH3 domain experiences a conformational instability, even in an aqueous solution.

ERK1/2 activation by the C. elegans muscarinic acetylcholine receptor GAR-3 in cultured mammalian cells involves multiple signaling pathways

  • Shin, Young-Mi;Shin, Young-Ju;Kim, Seung-Woo;Park, Yang-Seo;Cho, Nam-Jeong
    • Animal cells and systems
    • /
    • v.14 no.3
    • /
    • pp.155-160
    • /
    • 2010
  • Extracellular signal-regulated kinases 1/2 (ERK1/2) play important roles in a variety of biological processes including cell growth and differentiation. We have previously reported that GAR-3 activates ERK1/2 via phospholipase C and protein kinase C, presumably through pertussis toxin (PTX)-insensitive Gq proteins, in Chinese hamster ovary (CHO) cells. Here we provide evidence that GAR-3 also activates ERK1/2 through PTX-sensitive G proteins, phosphatidylinositol 3-kinase (PI 3-kinase), and Src family kinases in CHO cells. We further show that in human embryonic kidney (HEK293) cells, epidermal growth factor receptor and Ras are required for efficient ERK1/2 activation by GAR-3. Taken together, our data indicate that GAR-3 evokes ERK1/2 activation through multiple signaling pathways in cultured mammalian cells.

Inhibitory effects of Oxya chinensis sinuosa ethanol extract on RANKL-induced osteoclast differentiation

  • Ra-Yeong Choi;Bong Sun Kim;Sohyun Park;Minchul Seo;Joon Ha Lee;HaeYong Kweon;In-Woo Kim
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.48 no.1
    • /
    • pp.13-18
    • /
    • 2024
  • The rice field grasshopper, Oxya chinensis sinuosa (OC), has traditionally been utilized in Korea for various purposes; however, its potential benefits in the context of osteoporosis remain unclear. The results revealed that OC ethanol extract (OCE) significantly inhibited the formation and activity of tartrate-resistant acid phosphatase (TRAP)-positive cells in receptor activator of nuclear factor-κB ligand (RANKL)-stimulated RAW264.7 cells. Furthermore, OCE, at concentrations ranging from 100 to 400 ㎍/mL, demonstrated a dose-dependent reduction in the protein expression of osteoclast-specific markers, including nuclear factor of activated T cell cytoplasmic 1, c-Src, and TRAP, when compared to RANKL stimulation alone. Additionally, OCE significantly inhibited RANKL-induced activation of p38 mitogen-activated protein kinase (MAPK) and c-Jun N-terminal kinase (JNK) but not the activation of extracellular signal-regulated kinase. Collectively, these results indicate that OCE suppresses osteoclastogenesis by attenuating the phosphorylation of p38 MAPK and JNK. Consequently, these findings suggest that OCE holds promise for the prevention of osteoporosis.

Chronic Ca2+ influx through voltage-dependent Ca2+ channels enhance delayed rectifier K+ currents via activating Src family tyrosine kinase in rat hippocampal neurons

  • Yang, Yoon-Sil;Jeon, Sang-Chan;Kim, Dong-Kwan;Eun, Su-Yong;Jung, Sung-Cherl
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.2
    • /
    • pp.259-265
    • /
    • 2017
  • Excessive influx and the subsequent rapid cytosolic elevation of $Ca^{2+}$ in neurons is the major cause to induce hyperexcitability and irreversible cell damage although it is an essential ion for cellular signalings. Therefore, most neurons exhibit several cellular mechanisms to homeostatically regulate cytosolic $Ca^{2+}$ level in normal as well as pathological conditions. Delayed rectifier $K^+$ channels ($I_{DR}$ channels) play a role to suppress membrane excitability by inducing $K^+$ outflow in various conditions, indicating their potential role in preventing pathogenic conditions and cell damage under $Ca^{2+}$-mediated excitotoxic conditions. In the present study, we electrophysiologically evaluated the response of $I_{DR}$ channels to hyperexcitable conditions induced by high $Ca^{2+}$ pretreatment (3.6 mM, for 24 hours) in cultured hippocampal neurons. In results, high $Ca^{2+}$-treatment significantly increased the amplitude of $I_{DR}$ without changes of gating kinetics. Nimodipine but not APV blocked $Ca^{2+}$-induced $I_{DR}$ enhancement, confirming that the change of $I_{DR}$ might be targeted by $Ca^{2+}$ influx through voltage-dependent $Ca^{2+}$ channels (VDCCs) rather than NMDA receptors (NMDARs). The VDCC-mediated $I_{DR}$ enhancement was not affected by either $Ca^{2+}$-induced $Ca^{2+}$ release (CICR) or small conductance $Ca^{2+}$-activated $K^+$ channels (SK channels). Furthermore, PP2 but not H89 completely abolished $I_{DR}$ enhancement under high $Ca^{2+}$ condition, indicating that the activation of Src family tyrosine kinases (SFKs) is required for $Ca^{2+}$-mediated $I_{DR}$ enhancement. Thus, SFKs may be sensitive to excessive $Ca^{2+}$ influx through VDCCs and enhance $I_{DR}$ to activate a neuroprotective mechanism against $Ca^{2+}$-mediated hyperexcitability in neurons.

Novel p104 protein regulates cell proliferation through PI3K inhibition and p27Kip1 expression

  • Han, Seung-Jin;Lee, Jung-Hyun;Choi, Ki-Young;Hong, Seung-Hwan
    • BMB Reports
    • /
    • v.43 no.3
    • /
    • pp.199-204
    • /
    • 2010
  • The protein p104 was first isolated as a binding partner of the Src homology domain of phospholipase C$\gamma$1, and has been shown to associate with p85$\alpha$, Grb2. The ectopic expression of p104 reduced cellular growth rate, which was also achieved with the overexpression of only the proline-rich region of p104. The proline-rich region of p104 has been found to inhibit the colony formation of platelet-derived growth factor BB-stimulated NIH3T3 cells and MCF7 cancer cells on soft agar. Mutagenesis analysis showed that the second and third proline-rich regions are essential for growth control, as well as for interaction with p85$\alpha$. Overexpression of p104 increased the level of the cyclin-dependent kinase inhibitor, $p27^{Kip1}$, and inhibited the activity of phosphoinositide 3-kinase (PI3K). In summary, p104 interacts with p85$\alpha$ and is involved in the regulation of $p27^{Kip1}$ expression for the reduction of cellular proliferation.

Purification and Biological Activities of MT 1155 Inducing Morphological Change of Rous Sarcoma Virus-Transformed Normal Rat Kidney Cell (Rous Sarcoma Virus에 의해 형질전환된 NRK 세포의 형태변화를 유도하는 활성물질 MT 1154의 분리와 생물학적 활성)

  • 안종석;박문수;박찬선;윤병대;민태익;안순철;오원근;이현선;윤병대
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.1
    • /
    • pp.59-65
    • /
    • 1993
  • We isolated Actinomycetes strain GMT 1155 and purified the active compound, MT 1155, on the morphological reversion of ts/NRK cell from the isolate. MT 1155 was identified as toyocamycin having antifungal and antitumor activities from physico-chemical properties and UV, IR, $^1H$-NMR, $^13C$-NMR and mass spectrum. MT 1155 showed the morphologically reversional activity on ts/NRK cell and the cytotoxicity on CTLL cell at the final concentrations of 1.7 JlM and 0.2 11M, respectively and its $IC_{50}$ value on protein kinase A enzyme was 2.3 $\mu$M. Also it had strong antifungal activity against several pathogenic fungi but not antibacterial activity. And it did not inhibit both protein kinase C activity and the bleb-formation of K562 cell induced by phorbol esters.

  • PDF

Cudrania tricuspidata Suppresses Mast Cell-Mediated Allergic Response In Vitro and In Vivo (꾸지뽕나무 추출물의 비만세포 억제에 의한 항알레르기 효과 및 기전)

  • Kim, Young-Mi
    • YAKHAK HOEJI
    • /
    • v.56 no.1
    • /
    • pp.26-34
    • /
    • 2012
  • Mast cells play an important role in early and late phase allergic reactions through allergen and IgE-dependent release of histamine, proteases, prostaglandins, and several multifunctional cytokines. In this study, we investigated whether Cudrania tricuspidata extract (CTE) suppresses IgE-mediated allergic responses in mast cells, an allergic animal model, and its mechanism of action in mast cells. We found that CTE inhibited IgE-mediated degranulation and cytokine production in rat basophilic leukemia (RBL)-2H3 mast cells and bone marrow-derived mast cells (BMMC), as well as passive cutaneous anaphylaxis (PCA) in mice. With regard to its mechanism of action, CTE suppressed the activating phosphorylation of spleen tyrosine kinase (Syk), a key enzyme in mast cell signaling processes and that of LAT, a downstream adaptor molecule of Syk in $Fc{\varepsilon}RI$-mediated signal pathways. CTE also suppressed the activating phosphorylation of mitogen-activated protein (MAP) kinases and Akt. The present results strongly suggest that the anti-allergic activity of CTE is mediated through inhibiting degranulation and allergic cytokine secretion by inhibition of Syk kinase in mast cells. Therefore, CTE may be useful for the treatment of allergic diseases.

Nanosphere Form of Curcumin Stimulates the Migration of Human Umbilical Cord Blood Derived Mesenchymal Stem Cells

  • Kim, Do-Wan;Kim, Ju Ha;Lee, Sei-Jung
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2020.10a
    • /
    • pp.221-221
    • /
    • 2020
  • Curcumin, a hydrophobic polyphenol derived from turmeric, has been used a food additive and as a herbal medicine for the treatment of various diseases. In the present study, we found the functional role of a nanosphere loaded with curcumin (CN) in the promotion of the motility of human umbilical cord blood derived mesenchymal stem cells (hUCB-MSCs) during the wound closure. We found that the efficacy of hUCB-MSCs migration induced by CN was 1000-fold higher than that of curcumin powder. CN significantly increased the motility of hUCB-MSCs by activating c-Src, which is responsible for the phosphorylation of protein kinase C (PKC) and extracellular signal-regulated kinase (ERK). CN induced the expression levels of α-actinin-1, profilin-1 and filamentous-actin, as regulated by the phosphorylation of nuclear factor-kappa B during its promotion of cell migration. In a mouse skin excisional wound model, we found that transplantation of UCB-MSCs pre-treated with CN enhances wound closure, granulation, and re-epithelialization at mouse skin wound sites. These results indicate that CN is a functional agent that promotes the mobilization of UCB-MSCs for cutaneous wound repair.

  • PDF

Pyrrole-Derivative of Chalcone, (E)-3-Phenyl-1-(2-Pyrrolyl)-2-Propenone, Inhibits Inflammatory Responses via Inhibition of Src, Syk, and TAK1 Kinase Activities

  • Yang, Sungjae;Kim, Yong;Jeong, Deok;Kim, Jun Ho;Kim, Sunggyu;Son, Young-Jin;Yoo, Byong Chul;Jeong, Eun Jeong;Kim, Tae Woong;Han Lee, In-Sook;Cho, Jae Youl
    • Biomolecules & Therapeutics
    • /
    • v.24 no.6
    • /
    • pp.595-603
    • /
    • 2016
  • (E)-3-Phenyl-1-(2-pyrrolyl)-2-propenone (PPP) is a pyrrole derivative of chalcone, in which the B-ring of chalcone linked to ${\beta}$-carbon is replaced by pyrrole group. While pyrrole has been studied for possible Src inhibition activity, chalcone, especially the substituents on the B-ring, has shown pharmaceutical, anti-inflammatory, and anti-oxidant properties via inhibition of NF-${\kappa}B$ activity. Our study is aimed to investigate whether this novel synthetic compound retains or enhances the pharmaceutically beneficial activities from the both structures. For this purpose, inflammatory responses of lipopolysaccharide (LPS)-treated RAW264.7 cells were analyzed. Nitric oxide (NO) production, inducible NO synthase (iNOS) and tumor necrosis factor-${\alpha}$ (TNF-${\alpha}$) mRNA expression, and the intracellular inflammatory signaling cascade were measured. Interestingly, PPP strongly inhibited NO release in a dose-dependent manner. To further investigate this anti-inflammatory activity, we identified molecular pathways by immunoblot analyses of nuclear fractions and whole cell lysates prepared from LPS-stimulated RAW264.7 cells with or without PPP pretreatment. The nuclear levels of p50, c-Jun, and c-Fos were significantly inhibited when cells were exposed to PPP. Moreover, according to the luciferase reporter gene assay after cotransfection with either TRIF or MyD88 in HEK293 cells, NF-${\kappa}B$-mediated luciferase activity dose-dependently diminished. Additionally, it was confirmed that PPP dampens the upstream signaling cascade of NF-${\kappa}B$ and AP-1 activation. Thus, PPP inhibited Syk, Src, and TAK1 activities induced by LPS or induced by overexpression of these genes. Therefore, our results suggest that PPP displays anti-inflammatory activity via inhibition of Syk, Src, and TAK1 activity, which may be developed as a novel anti-inflammatory drug.