• 제목/요약/키워드: Sr doping

검색결과 127건 처리시간 0.019초

Bi-Sr-Ca-Cu-O 계에 서 초전도상 형성에 미치는 도우핑 원소의 영향 (Influence of Doping Elements on the. Formation of Superconducting Phase in the Bi-Sr-Ca-Cu-O System)

  • 양승호;정지인;박용필
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1999년도 추계학술대회 논문집
    • /
    • pp.217-220
    • /
    • 1999
  • We investigated the effects of doping elements on the Bi-Sr-Ca-Cu-0 ceramics. The doping elements can be classified into groups depending on their supeconducting characteristics in the Bi -Sr-Ca-Cu -O structure. The first group of doping elements(Co, Fe, Ni and Zn) substitute into the copper site and can reduce the critical temperatures of the 2223 and 2212 phases. The second group of doping elements(Y and La) substitute into the Ca site and cause the disappearance of the 2223 phase and increase the critical temperatures in the 2212 phase.

  • PDF

Bi-Sr-Ca-Cu-O 세라믹의 도우핑 특성 (Deping characteristics of the Bi-Sr-Ca-Cu-O ceramics)

  • 박용필;김영천;황석영
    • E2M - 전기 전자와 첨단 소재
    • /
    • 제9권1호
    • /
    • pp.1-8
    • /
    • 1996
  • We investigated the effects of doping elements on the Bi-Sr-Ca-Cu-O ceramics. The doping elements can be classified into four groups depending on their supeconducting characteristics in the Bi-Sr-Ca-Cu-O structure. The first group of doping elements(Co, Fe, Ni and Zn) substitute into the copper site and can reduce the critical temperatures of the 2223 and 2212 phases. The second group of doping elements(Y and La) substitute into the Ca site and cause the disappearance of the 2223 phase and increase the critical temperatures in the 2212 phase. The third group of doping elements(P and K) have a tendency to decompose the superconducting phase and reduce the optimal sintering temperature. The fourth group of doping elements(B, Si, Sn and Ba) almost unaffected the superconductivity of the 2223 and 2212 phase.

  • PDF

Effect of chemical doping on heterostructured Fe-based superconductor Sr2VO3FeAs

  • Ok, Jong Mok;Na, Se Woong;Kim, Jun Sung
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제20권1호
    • /
    • pp.28-31
    • /
    • 2018
  • Phase diagrams of electron- and hole-doped $Sr_2VO_3FeAs$ are investigated using Co and Mn substitution at Fe site. Metallic nature survives only for Co (electron) doping, not for Mn (hole) doping. The conductivity of $Sr_2VO_3(Fe,M)As$ (M=Mn,Co) is sensitive to the structural modification of FeAs microstructure rather than carrier doping. This finding implies that the FeAs layer plays a dominant role on the charge conduction, thus the $SrVO_3$ layers should be considered as an insulating block. Also, we found that the superconductivity is rapidly suppressed by both dopants. This result is different from the conventional behavior that superconductivity is induced by doping in the most of Fe pnictides. Our finding strongly supports the uniqueness of $Sr_2VO_3FeAs$ among the Fe pnictide superconductors.

PZN-PNN-PZT계 압전 조성에서 PZN 함량과 Sr Doping이 압전 특성에 미치는 영향 (The Effects of PZT Ratio and Sr Doping on the Piezoelectric Properties in PZN-PNN-PZT)

  • 최정식;이창현;신효순;여동훈;이준형
    • 한국전기전자재료학회논문지
    • /
    • 제31권1호
    • /
    • pp.19-23
    • /
    • 2018
  • In a Pb-included piezoelectric composition, $Sr_yPb_{1-y}[(Zn_{1/3}Nb_{2/3})_x-(Ni_{1/3}Nb_{2/3})_{0.2}-(Zr_{0.46}Ti_{0.54})_{0.8-x}]O_3$ was selected in order to attain high piezoelectric properties. According to the PZN ratio (x) and the amount of Sr doping (y), the crystal structure, microstructure and piezoelectric properties were measured and evaluated. In the case of Sr 4 mol% doping, the piezoelectric properties were the highest for a PZN ratio of 0.1. In this condition, the grain size was larger and the intensity was higher. With the PZN ratio fixed and varying the Sr doping, the piezoelectric properties increased until 10 mol% doping and then decreased for over 12 mol% doping. In the case of x=0.1 and y=10 mol%, the best piezoelectric properties were obtained, i.e., $d_{33}=660pC/N$ and $k_p=68.5%$, and these values seem to be related to the grain size and crystal structure.

Bi계 세라믹에서 초전도체 특성에 미치는 도우핑 원소의 영향 (Effect of Doping Elements on Superconducting Characteristics in Bi-system Ceramics)

  • 양승호;박용필;김용주
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2000년도 하계학술대회 논문집
    • /
    • pp.198-203
    • /
    • 2000
  • This paper investigated the effects of doping elements on the Bi-Sr-Ca-Cu-O ceramics. The doping elements can be classified into four groups depending on their superconducting characteristics in the Bi-Sr-Ca-Cu-O structure. The first group of doping elements(Co, Fe, Ni and Zn) substitute into the copper site and can reduce the critical temperatures of the 2223 and 2212 phases. The second group of doping elements(Y and La) substitute into the Ca site and cause the disappearance of the 2223 phase and increase the critical temperatures in the 2212 phase. The third group of doping elements(P and K) have a tendency to decompose the superconducting phase and reduce the optimal sintering temperature. The fourth group of doping elements(B, Si, Sn and Ba) almost unaffected the superconductivity of the 2223 and 2212 phase.

  • PDF

SrS:Ce 박막 EL 소자의 열화특성에 관한 Rb 첨가의 영향 (Effect of Rb Doping on Aging Characteristics of SrS:Ce Thin Film Electroluminescent Devices)

  • 이상태;허성곤;이홍찬
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.259-260
    • /
    • 2006
  • Effects of Rb doping on the aging characteristics have been studied in SrS:Ce thin film electroluminescence (EL) devices. It has been found that a luminance saturation and decrease of an EL efficiency are suppressed by Rb doping. For the SrS:Ce,Rb device, a luminance and an efficiency after 1024 h of aging at 1 kHz drive maintain at about 70% and 80% of the initial values, respectively.

  • PDF

Effects of Sr Contents on Structural Change and Electrical Conductivity in Cu-doped LSM ($La_{1-x}Sr_xMn_{0.8}Cu_{0.2}O_{3{\pm}{\delta}}$)

  • 류지승;노태민;김진성;정철원;이희수
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 추계학술발표대회
    • /
    • pp.33.1-33.1
    • /
    • 2011
  • Strontium doped lanthanum manganite (LSM) with perovskite structure for SOFC cathode material shows high electrical conductivity and good chemical stability, whereas the electrical conductivity at intermediate temperature below $800^{\circ}C$ is not sufficient due to low oxygen ion conductivity. The approach to improve electrical conductivity is to make more oxygen vacancies by substituting alkaline earths (such as Ca, Sr and Ba) for La and/or a transition metal (such as Fe, Co and Cu) for Mn. Among various cathode materials, $LaSrMnCuO_3$ has recently been suggested as the potential cathode materials for solid oxide fuel cells (SOFCs). As for the Cu doping at the B-site, it has been reported that the valence change of Mn ions is occurred by substituting Cu ions and it leads to formation of oxygen vacancies. The electrical conductivity is also affected by doping element at the A-site and the co-doping effect between A-site and B-site should be described. In this study, the $La_{1-x}Sr_xMn_{0.8}Cu_{0.2}O_{3{\pm}{\delta}}$ ($0{\leq}x{\leq}0.4$) systems were synthesized by a combined EDTA-citrate complexing process. The crystal structure, morphology, thermal expansion and electrical conductivity with different Sr contents were studied and their co-doping effects were also investigated.

  • PDF

스트론튬(Strontium)이 도핑된 다공성 BCP 뼈 이식제가 조골세포에 미치는 영향 (Effect of Strontium Doped Porous BCP as Bone Graft Substitutes on Osteoblast)

  • 변인선;;서형석;이병택;송호연
    • 한국재료학회지
    • /
    • 제20권3호
    • /
    • pp.155-160
    • /
    • 2010
  • In this study, we investigated primary biocompatibility and osteogenic gene expression of porous granular BCP bone substitutes with or without strontium (Sr) doping. In vitro biocompatibility was investigated on fibroblasts like L929 cells and osteoblasts like MG-63 cells using a cell viability assay (MTT) and one cell morphological observation by SEM, respectively. MTT results showed a cell viability percent of L929 fibroblasts, which was higher in Sr-BCP granules (98-101%) than in the non-doped granules (92-96%, p < 0.05). Osteoblasts like MG-63 cells were also found to proliferate better on Sr-doped BCP granules (01-111%) than on the non-doped ones (92-99%, p < 0.05) using an MTT assay. As compared with pure BCP granules, SEM images of MG-63 cells grown on sample surfaces confirmed that cellular spreading, adhesion and proliferation were facilitated by Sr doping on BCP. Active filopodial growth of MG-63 cells was also observed on Sr-doped BCP granules. The cells on Sr-doped BCP granules were well attached and spread out. Gene expression of osteonectin, osteopontin and osteoprotegrin were also evaluated using reverse transcriptase polymerase chain reaction (RT-PCR), which showed that the mRNA phenotypes of these genes were well maintained and expressed in Sr-doped BCP granules. These results suggest that Sr doping in a porous BCP granule can potentially enhance the biocompatibility and bone ingrowth capability of BCP biomaterials.

Effect of Pr substitution on the superconducting properties of (Pb0.5Cd0.5)SrLaCuOz

  • Lee, H.K.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제17권3호
    • /
    • pp.5-8
    • /
    • 2015
  • The effects of Pr substitution on the structural and the superconducting properties for Pb-based 1201 cuprates with compositions of $(Pb_{0.5-x}Pr_xCd_{0.5})SrLaCuO_z(0{\leq}x{\leq}0.25)$ and $(Pb_{0.45}Pr_{0.05}Cd_{0.5})(Sr_{1-y}La_{1+y})CuO_z(0{\leq}y{\leq}0.1)$ were investigated. It is found that $T_c$ decreases as the Pr-doping content x increases in the $(Pb_{0.5-x}Pr_xCd_{0.5})SrLaCuO_z$ samples, whereas $T_c$ of $(Pb_{0.45}Pr_{0.05}Cd_{0.5})(Sr_{1-y}La_{1+y})CuO_z$ samples increases as the La-doping content y increases. The experimental results were discussed in connection with the change in hole concentration of the samples.

고체산화물 연료전지용 (La, Sr)$MnO_3$ 양극에 대한 Co 첨가효과 (Effect of Co Dopant on the (La, Sr)$MnO_3$ Cathode for Solid Oxide Fuel Cell)

  • 김재동;김구대;이기태
    • 한국세라믹학회지
    • /
    • 제37권6호
    • /
    • pp.612-616
    • /
    • 2000
  • The effect of Co dopant on the (La, Sr)MnO3 cathode was investigated. La2Zr2O7 and SrZrO3 were formed as the reaction products between YSZ and LSMC. The reactivity of LSMC with YSZ increased with increasing Co content. However, the cathodic polarization resistance decreased with increasing Co doping. Therefore, doping Co at Mn site in the (La, Sr)MnO3 cathode was effective on controlling the polarization resistance of the cathode. The polarization property of LSMC-YSZ composite(60 wt%: 40 wt%) cathode was better than that of LSMC single cathode.

  • PDF