• Title/Summary/Keyword: Sr 동위원소비

Search Result 42, Processing Time 0.026 seconds

Sr and Pb Isotopic Properties in Limnetic Gastropod (Semisulcospira libertina) Shell in the Jinan, Jeonbuk Area. (하천에 서식하는 민물고동(다슬기)의 Sr, Pb 동위원소 특성)

  • Jeon Seo-Ryeong;Chung Jae-il
    • Economic and Environmental Geology
    • /
    • v.38 no.2 s.171
    • /
    • pp.129-134
    • /
    • 2005
  • The $^{87}Sr/^{86}Sr$ ratios between water and biogenic material are similar in marine and lacustrine environment. Pb isotope ratios we, however, reported not to have been corresponding between the biological tissues and ambient water in aquatic system, contrary to the Sr isotope ratios. In order to explore the potential application of two isotopes as environmental tracers, we report here the isotopic compositions of strontium and lead of gastropod shell in fresh water in Jinan area. The $^{87}Sr/^{86}Sr$ ratios of carbonate shells of gastropod living in fresh stream water, are similar as that of ambient water but are different by sites. The different $^{87}Sr/^{86}Sr$ ratios of stream water between the sites is likely caused by the difference of the isotopic composition of Sr derived form rocks in the basin. In contrast, there is a distinct difference of the lead isotopic values between the water and the gastropod shell, suggesting that shell-fish available lead in aquatic system is different from dissolved lead in water. It is assumed that the majority of Pb in stream water is derived from atmospheric Pb accumulated on soil materials over years rather than from rock.

Optimal Conditions for Pretreated Sample for Sr Isotope Analysis by MC-ICP-MS: A Comparison Between Eichrom (SR-R50-S)'s and Bio-Rad(AG®50W-X8)'s Resins (다검출기 유도결합 플라즈마 질량분석기에 의한 Sr 동위원소 분석을 위해 전처리된 시료의 최적 조건: Eichrom사 Sr 수지(SR-R50-S)와 Bio-Rad사 수지(AG®50W-X8) 비교)

  • Myoung Jung, Kim;Seung-Gu, Lee
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.4
    • /
    • pp.507-520
    • /
    • 2022
  • The Sr isotope ratio, which is used as basic data for rock formation time, crustal and mantle evolution studies, is determined by mass spectrometer such as thermal ionization mass spectrometry (TIMS) or multi-detector inductively coupled plasma mass spectrometry (MC-ICP-MS). In this technical report, we compared how incomplete chemical separation of elements affects the determination of Sr isotope ratios. For the experiment, commercial resin, NBS987(NIST SRM987) Sr isotope standard, and rock standard samples from the Geological Survey of Japan (GSJ) such as JG1a, JB3 and JA1 were used. As a result of the comparative experiment, it was clearly observed that the measured values of 87Sr/86Sr change when Rb remains due to incomplete separation of the NBS987 Sr isotope standard sample as well as the rock standard samples of GSJ. This indicates that complete separation is an important factor since the calculated value deviates from the true value even though correction for isotope interference by isobar is performed when measuring the isotope ratio with MC-ICP-MS. This also suggests that, when reporting the measurement result of Sr isotope ratio using MC-ICP-MS, the measurement strength of 85Rb should be reported together with the measurement strength of all isotopes of Sr so that isotope interference by isobar can be judged.

REE and Sr-Nd Isotopic Composition of the Shelf Sediments around Jeju Island, Korea (제주도 주변 대륙붕 퇴적물의 REE와 Sr-Nd 동위원소 조성)

  • Kim, Tae-Joung;Youn, Jeungsu
    • Journal of the Korean earth science society
    • /
    • v.33 no.6
    • /
    • pp.481-496
    • /
    • 2012
  • REE, major and trace elements, and Sr-Nd isotopic ratios of surface sediments around Jeju Island were analyzed for identifying the origin of the sediments. The Chemical Index of Alteration (CIA) between 44.2 to 68.9 (av. 59.4) shows a similarity with the Huanghe sediment. The most sediments found within the study areas show a very similar chondrite-normalized REE pattern that has enriched LREE ($La_{(N)}/Sm_{(N)}$ >3) and small negative Eu anomaly, typically of average shales. The UCC-nornalized REE patterns of the southwestern offshore sediment samples show a very similar pattem with the Changjiang sediment with enriched in most REE and more convex REE pattern than those of the Huanghe and Keum rivers sediments, which indicates that the Changjiang River's suspended sediments have been transported into the western part of Jeju Island. The $^{87}Sr/^{86}Sr$ isotopic ratios vs ${\varepsilon}_{Nd}(0)$ values were thus used as a tracer to discriminate the provenance of sediments in the study area. Based on the discriminated diagram, it clearly showed that most sediments in the western and northwestern part were closely plotted with sediments of the Huanghe River. However, the sediments in the southwestern part near the Changjianf estuary were closely plotted with submerged delta sediments of the Changjiang River. In contrast, the sediment samples of the northeastern part showed discriminative figures from those of the Chinese rivers. It suggests that sediments around Jeju Island must be originated from diverse sources.

Rb-Sr Isotope Geochemistry in Seokmodo Granitoids and Hot Spring, Gangwha: An Application of Sr Isotope for Clarifying the Source of Hot Spring (강화 석모도 화강암류와 온천수의 지구화학: 온천수의 기원규명을 위한 Sr 동위원소의 응용)

  • Lee Seung-Gu;Kim Tong-Kwon;Lee Jin-Soo;Song Yoon-Ho
    • The Journal of the Petrological Society of Korea
    • /
    • v.15 no.2 s.44
    • /
    • pp.60-71
    • /
    • 2006
  • The Seokmodo consists mainly of biotite granite and granodiorite. The biotite granite is divided into the south and the north part by granodiorite. There occurs high temperature hot spring of which temperature is up to $72^{\circ}C$. The Rb-Sr isotopic data for the biotite granite define whole-rock isochron ages of $207{\pm}70$ Ma with initial Sr isotopic ratio of 0.7132 in north part and $132{\pm}50$ Ma with initial Sr isotopic ratio of 0.7125 in south part, suggesting that the magma be derived from the crustal source material. The geochemical characteristics of the biotite granite and hornblende granodiorite indicate that they were crystallized from calc-alkaline under syn-collisional tectonic environment. The samples of hot spring were collected at March 2005 and March 2006. The $^{87}Sr/^{86}Sr$ ratios of hot spring are 0.714507 and 0.714518, respectively and correspond to those oi the granite being occurred at the south part. The similarity of $^{87}Sr/^{86}Sr$ ratios between the granite and hot spring strongly suggests that the hot spring might be derived from the Seokmodo biotite granite.

Geochemical Application for Clarifying the Source Material of the Earthenware: A Preliminary Study for Archaeological Application of Geochemical Tool (도토기의 태토(기원물질)산지를 추적하기 위한 지구화학적 응용연구: 지구화학연구기법의 고고학적 응용을 위한 기초연구)

  • Lee, Seung-Gu;Lee, Kil-Yong;Yoon, Yoon-Yeol;Yang, Myeong-Kwon;Kim, Kyu-Ho;Lee, Sung-Joo;Ahn, Sang-Doo
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.3
    • /
    • pp.181-197
    • /
    • 2010
  • This study is for finding a geoscientific factor for clarifying the source soil of the ancient earthenware finding. The used samples were the earthenware, soil and rocks, which were collected at the Gyeongju, Gyeongsan and Haman area. The chemical and mineralogical study for the samples were carried out for understanding the change of mineralogical and chemical composition among them. The mineralogical compositions of the earthenware are different from those of the soils from the surrounding area, which suggests that the mineralogical approach for clarifying the source soil of the earthenware should be difficult. Major element compositions of the earthenware also are different from those of the surrounding soils, which suggests that the comparison of the chemical composition using the major elements might be difficult for deducing the source soil of the earthenware. However, PAAS-normalized rare earth element (REE) patterns and Nd model ages among the rock, soils and earthenware from the same sampling sites show similar characteristics one another compared to those of the major element compositions. Nd-Sr isotopic systematics among the earthenware, soils and rocks also show a close relationship. Our results suggest that REE and Nd-Sr isotope geochemistry might be more useful than the other geochemical technique in clarifying the source soils of the ancient earthenware.

Geochemical Study on the Genesis of Chuncheon Nephrite Deposit (춘천 연옥의 기원에 관한 지구화학적 연구)

  • 박계현;노진환
    • The Journal of the Petrological Society of Korea
    • /
    • v.9 no.2
    • /
    • pp.53-69
    • /
    • 2000
  • To reveal the origin of the Chuncheon nephrite deposit, radiogenic isotopes of Sr and Pb, stable isotopes of 0 and H, and rare earth elements concentrations were analyzed. Such geochemical data were integrated to track the stepwise changes during the various ore formation stages. All the samples from the nephrite deposit have significantly low 0 isotopic ratios compared with the marble from which they had been formed, which reflects the very important role of the crustal circulating water with low 6180 and 6D in every stage of ore formation. There were progressive decrease of 6180 and 6D during the genesis of Chuncheon nephrite deposit. Newly formed minerals during the ore formation reveal disequilibrium with existing minerals in the respect of 0 isotope, which suggests that the ore-forming fluid of circulating water origin was involved with significant water-rock ratios in every step of ore formation process. The ore samples have Sr and Pb isotopic ratios similar to the values of Kyeonggi gneiss complex within which the deposit is located, which also suggests the important role of crustal circulating water in the genesis of the deposit. In conclusion, all the geochemical data support that major portion of the ore-forming fluid of Chuncheon nephrite deposit was derived ultimately from the surface water of meteoric origin. The meteoric water supplied Sr and Pb through leaching the rocks surrounding the ore deposits.

  • PDF

A Provenance Study of Iron Archaeological Sites in the Gyeongsang Province: Petrographic and Geochemical Approaches (경상지역 제철유적의 산지추정 연구: 암석기재학 및 지화학적 접근)

  • Jaeguk Jo;Seojin Kim;Jiseon Han;Su Kyoung Kim;Dongbok Shin;Byeongmoon Kwak;Juhyun Hong;Byeongyong Yu;Jinah Lim
    • Economic and Environmental Geology
    • /
    • v.56 no.4
    • /
    • pp.475-499
    • /
    • 2023
  • To infer the provenance of raw iron materials utilized in iron production at the archaeological sites in Gyeongsang province, petrographic and geochemical analyses were conducted for smelting samples and major iron ores sourced from ore deposits. The smelting samples excavated from various iron archaeological sites were classified into different types according to their refining processes, such as iron bloom, iron bloom slag, pig iron, pig iron slag, forging iron flake, smithery iron, iron flake, and arrowhead. These samples exhibited discernable differences in their mineralogical components and texture. The enrichments of major elements such as aluminum and calcium in silicate minerals of the residual slags and the high contents of trace elements such as nickel and copper in some iron-making relics reflect the characteristics of raw iron ores, and thus can be regarded as potential indicators for inferring the provenance of source materials. In particular, the compositional ranges of Pb-Sr isotope ratios for the iron smelting samples were classified into three categories: 1) those exhibiting similar ratios to those of the raw iron ores, 2) those enriched in strontium isotope ratio, and 3) those enriched in both lead and strontium isotope ratios. The observed distinct Pb-Sr isotope characteristics in the iron smelting samples suggest the potential contribution of specific additives being introduced during the high-temperature refining process. These results provide a new perspective on the interpretation of the provenance study of the iron archaeological samples in Gyeongsang province, particularly in terms of the potential contribution of additives on the refining process.

A Distinctive Chemical Composition of the Tektites from Thailand and Vietnam, and Its Geochemical Significance (타이와 베트남에서 수집된 텍타이트의 화학조성과 지구화학적 의의)

  • Lee, Seung-Gu;Tanaka, Tsuyoshi;Asahara, Yoshihiro;Minami, Masayo
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.3
    • /
    • pp.281-295
    • /
    • 2017
  • We determined chemical compositions like abundance of major and trace elements, Sr and Nd isotope compositions for two tektites from the Thailand and Vietnam. Their chemical compositions are similar to each other, and seem to be similar to those of PAAS (Post Archean Australian Shale) rather than upper continental crust. In particular, primitive mantle-normalized spider diagrams and chondrite-normalized REE patterns for two tektites are the same, suggesting that they might be derived from the same source material. The $^{87}Sr/^{86}Sr$ and $^{143}Nd/^{144}Nd$ ratios from Thailand tektite are $0.718870{\pm}0.000008(2{\sigma}_m)$ and $0.512024{\pm}0.000012(2{\sigma}_m)$, respectively, and those from Vietnam are $0.717022{\pm}0.000008(2{\sigma}_m)$ and $0.511986{\pm}0.000013(2{\sigma}_m)$, respectively. The $^{87}Sr/^{86}Sr$ and $^{143}Nd/^{144}Nd$ ratios from Thailand tektite are slightly enriched than those of Vietnam tektite. $^{87}Sr/^{86}Sr$ ratios from the Vietnam and Thai tektites were plotted on the range of Australasian tektites reported previously. $^{143}Nd/^{144}Nd$ ratio of Vietnam tektite from this study was lower than the range of $^{143}Nd/^{144}Nd$ ratio from the Australasian tektite reported previously whereas that of Thai tektite was included in the range of $^{143}Nd/^{144}Nd$ ratio from the Australasian tektite. The geochemical characteristics from two tektites in this study indicate that they may be derived from the very similar source materials.

Rare Earth Element, Sm-Nd and Rb-Sr Age and its Geochemical Implication of Leucogranite in the Deokgu Hot Spring Area, Yeongnam Massif, Korea (영남육괴 북동부 덕구온천지구 우백질 화강암의 희토류원소 분포도, Sm-Nd, Rb-Sr 연대 및 지구화학적 의의)

  • Lee, Seung-Gu;Kim, Tong-Kwon;Lee, Tae-Jong
    • The Journal of the Petrological Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.207-217
    • /
    • 2011
  • Here we report major element composition, trace and rare earth element abundance, Sm-Nd and Rb-Sr isotopic composition from Deokgu leucogranite. Chondrite-normalized REE pattern and its Eu anomaly are divided into 3 types systematically, and have close relationship with $SiO_2$ contents. Such geochemical characteristic indicates that the leucogranite was derived by feldspar fractionation from a common source magma. Sm-Nd and Rb-Sr whole rock ages are $1,785{\pm}180Ma$ (initial $^{143}Nd/^{144}Nd\;ratio=0.51003{\pm}0.00016,\;2{\sigma}$; ${\varepsilon}_{Nd}(T)=-5.9$) and $1,735{\pm}260Ma$ (initial $^{87}Sr/^{86}Sr\;ratio=0.702{\pm}0.046,\;2{\sigma}$), respectively. Initial ${\varepsilon}_{Nd}$ value indicates that the magma should be derived from the crustal material. This initial ${\varepsilon}_{Nd}$ value also corresponds well with those from the Precambrian granitoids from North-China Craton rather than those of South-China Craton.

Nd, Sr and Noble Gas Isotopic Compositions of Alkali Basaltic Rocks and Mantle Xenoliths in the Baegryongdo (백령도에 분포하는 알칼리 현무암과 맨틀 포획암의 Nd-Sr과 영족기체 동위원소 조성)

  • ;Nagao Keisuke;;Sumino Hirochika
    • Economic and Environmental Geology
    • /
    • v.35 no.6
    • /
    • pp.523-532
    • /
    • 2002
  • The rare earth elements (REE) and Nd, Sr and noble gas isotopic compositions eHer'He, 4$^{\circ}$Arp6Ar) for the Quaternary alkali basaltic rocks and mantle xenoliths in the basaltic rocks from the Baegryongdo were investigated to decipher the origin of alkali basaltic magma and xenolith beneath the Sino-Korean craton. Analytical results are summarized as follows; (1) The alkali volcanic rocks with voluminous xenoliths which are represented by the Mg-olivine and clinopyroxene dominant spinel-lherzolite in the Baegryongdo consist mainly of the basalt-mugearite and basaltic andesite. (2) The REE pattern of alkali basaltic rocks characterized by high HREE is similar to that of oceanic island basalt (OlB). Relatively concordant REE patterns of the basaltic rocks suggest that the alkali basaltic magma be formed by the identical source materials. (3) The Nd-Sr isotopic data of the alkali basaltic rocks suggest that the alkali basaltic magma be originated from the depleted mantle source with a little contamination of the continental crustal materials. (4) The $^3$He/ $^4$He ratios in olivines of xenoliths ranging from 5.0${\pm}$1.lRa to 6.7${\pm}$1.3Ra are lower than that of MORB (ca. 8.0Ra). It suggest that the xenolith be derived from the subcontinental lithospheric mantle. However, the high $^3$Her'He value of 16.8${\pm}$3.IRa at 1800$^{\circ}$C fraction (sample no OL-7) might be resulted from the post-eruptive cosmogenic $^3$He. The 4OAr/ 36 Ar ratios in olivines of mantle xenoliths are comparable to that of atmospheric argon, and are much lower than that of the MORB type mantle. These facts can lead to conclusion that the olivine of the xenolith in the Baegryongdo is affected by the post-eruptive atmospheric contamination during the slow degassing process.