• Title/Summary/Keyword: Squeezing tube

Search Result 4, Processing Time 0.017 seconds

A Study on Optimum Shaft Alignment Analysis for VLCC (VLCC의 최적 축계정렬해석 연구)

  • Kim Hyu Chang;Kim Jun Gi
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2005.06a
    • /
    • pp.134-137
    • /
    • 2005
  • Recently, in VLCC, shafting system is stiffer due to large engine power whereas hull structure is more flexible due to scantling optimization, which can be suffered from alignment damage by incompatibility between shafting and hull, In this study, shafting system without stern tube forward bush was adapted for less sensitive system against external factors. Also, shaft alignment analysis was considered with hull deflection at various ship loading conditions and stern tube after bush of long journal bearing was evaluated by static squeezing pressure and dynamic oil film pressure with sloping control. Whirling vibration was also reviewed to avoid resonance with propeller blade order. So, reliable shafting design for VLCC could be achieved through optimized alignment analysis for the system without stern tube forward bush.

  • PDF

Study on the Design of Deformation Tube for 200kJ Large Energy Absorption (200kJ 대용량 에너지 흡수용 변형튜브 설계에 관한 연구)

  • Kim, Jin Mo;Lee, Jong Kil;Kim, Ki Nam
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.109-116
    • /
    • 2016
  • The market share of high-speed railway vehicles is increasing across the world. A high-performance impact energy absorption factor is essential to satisfy the safety standards of railway vehicles. A deformed tube assembly is a typical energy absorption factor in railway vehicles. The tube assembly comprises a deformed tube and a press-fitting punch, its performance depends on the absorption energy characteristics in the plastic zone of the tube. In this study, a deformed tube assembly of a railway vehicle is designed that can absorb a maximum impact energy of 200kJ under plastic deformation. Slab method and finite element analysis are used to estimate the reaction force of the punch in the initial stage, the performance of the designed tube assembly is confirmed experimentally.

A Study on Elastic Shaft Alignment Using Nonlinear Soaring Elements (비선형 베어링 요소를 이용한 탄성 추진 축계정렬에 관한 고찰)

  • Choung, Joon-Mo;Choe, Ick-Heung;Shin, Sang-Hoon
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.3
    • /
    • pp.259-267
    • /
    • 2005
  • The effects of hull flexibility on shaft alignment are growing as ship sizes are increased mainly for container carrier and LNG carrier. In order to consider hull flexibility on a propulsion shafting system, standardization of ship service conditions is necessary because hull deformation is continuously variable according to ship service conditions. How to summarize ship service conditions is suggested based on practically applicable four viewpoints : hull, engine, loading and sea status. Effects of the external forces acting on a ship propulsion shafting system are generally commented. Several design criteria regulated by classification societies are pointed at issue which seems to have Insufficient technical background. A qualitative verification is carried out to point out the invalidity of the assumption of effective supporting position. In this work, an elastic nonlinear multi-supporting bearing system is introduced as a key concept of the elastic shaft alignment. Hertz contact theory is proved to be more proper one than projected area method in calculation of the nonlinear elastic stiffness of the bearing, The squeezing and oil film pressure calculations in the long journal bearing like an after stern tube bearing are recognized as a necessary process for elastic shaft alignment design.

Fertigation Techniques Using Fertilizers with Peristaltic Hose Pump for Hydroponics (연동펌프를 이용한 비료염 공급 관비재배기술 연구)

  • Kim, D.E.;Lee, G.I.;Kim, H.H.;Woo, Y.H.;Lee, W.Y.;Kang, I.C.
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.17 no.1
    • /
    • pp.57-71
    • /
    • 2015
  • This study was conducted to develop the fertigation system with a peristaltic hose pump and brushless DC motor. The fertigation system was consisted of sensor, main controller, motor control unit, peristaltic pump, water supply pump, control panel, and filter. The peristaltic pump discharges liquid by squeezing the tube with rollers. Rollers attached to the external circumference of the rotor compresses the flexible tube. The fluid is contained within a flexible tube fitted inside a circular pump casing. The developed fertigation system has no mixing tank but instead injects directly a concentrated nutrient solution into a water supply pipe. The revolution speed of the peristaltic pump is controlled by PWM (Pulse width modulation) method. When the revolution speed of the peristaltic pump was 300rpm, the flow rate of the 3.2, 4.8, 6.3mm diameter tube was 202, 530, 857mL/min, respectively. As increasing revolution speed, the flow rate of the peristaltic pump linearly increased. As the inner diameter of a tube larger, a slope of graph is more steep. Flow rate of three roller was more than that of four roller. Flow rate of a norprene tube with good restoring force was more than that of a pharmed tube. As EC sensor probe was installed in direct piping in comparison with bypass piping showed good performance. After starting the system, it took 16~17 seconds to stabilize EC. The maximum value of EC was 1.44~1.7dS/m at a setting value of 1.4dS/m. The developed fertigation system showed ±0.06dS/m deviation from the setting value of EC. In field test, Cucumber plants generally showed good growth. From these findings, this fertigation system can be appropriately suitable for fertigation culture for crops.