• Title/Summary/Keyword: Squeeze Mode

Search Result 36, Processing Time 0.029 seconds

Bingham Properties and Damping Force Control of an ER Fluid under Squeeze Mode (압착모드하에서 ER유체의 빙햄특성 및 댐핑력 제어)

  • 홍성룡;최승복
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.11
    • /
    • pp.37-45
    • /
    • 2002
  • This paper presents the field-dependent Bingham characteristics and damping force control of an electro-rheological (ER) fluid under squeeze mode operation. The squeeze force of the ER fluid due to the imposed electric field is analyzed and an appropriate size of the disk-type electrode is devised. On the basis of the theoretical model of the ER fluid under squeeze mode operation, the yield stress and response speed of the ER fluid are distilled from the time responses of squeeze force to the step electric potentials. Measured squeeze forces under various excitation conditions are compared with the predicted ones from Bingham model and time constant obtained at the transient response test. In addition, the controllability of the field-dependent damping force of the ER fluid under squeeze mode is experimentally demonstrated by implementing simple PID controller.

Investigation on Vibration Control of Squeeze Mode ER Mount Subjected to 200 kg of Static Load (200 kg급 압착모드형 ER 마운트의 진동제어성능 고찰)

  • 정우진;정의봉;홍성룡;최승복
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.11
    • /
    • pp.882-889
    • /
    • 2002
  • This paper presents vibration control performance of a squeeze mode ER mount for high static load. After experimentally investigating the field-dependent damping force under the squeeze mode motion, a squeeze mode ER mount which can support 200 kg of static load is designed and manufactured. Displacement transmissibility of the proposed ER mount is experimentally evaluated in frequency domain with respect to the intensity of the electric field, and a sky-hook control algorithm is designed to attenuate unwanted vibration. Vibration isolation capabilities of the flow mode ER mount and rubber mount are compared to those of the proposed squeeze mode ER mount.

Magnetorheological fluids subjected to tension, compression, and oscillatory squeeze input

  • El Wahed, Ali K.;Balkhoyor, Loaie B.
    • Smart Structures and Systems
    • /
    • v.16 no.5
    • /
    • pp.961-980
    • /
    • 2015
  • Magnetorheological (MR) fluids are capable of changing their rheological properties under the application of external fields. When MR fluids operate in the so-called squeeze mode, in which displacement levels are limited to a few millimetres but there are large forces, they have many potential applications in vibration isolation. This paper presents an experimental and a numerical investigation of the performance of an MR fluid under tensile and compressive loads and oscillatory squeeze-flow. The performance of the fluid was found to depend dramatically on the strain direction. The shape of the stress-strain hysteresis loops was affected by the strength of the applied field, particularly when the fluid was under tensile loading. In addition, the yield force of the fluid under the oscillatory squeeze-flow mode changed almost linearly with the applied electric or magnetic field. Finally, in order to shed further light on the mechanism of the MR fluid under squeeze operation, computational fluid dynamics analyses of non-Newtonian fluid behaviour using the Bingham-plastic model were carried out. The results confirmed superior fluid performance under compressive inputs.

Vibration Reduction of Beam Structure using Squeeze Mode ER Mount (압착모드형 ER 마운트를 이용한 보 구조물의 진동저감 해석)

  • 정우진;김두기;정의봉;홍성룡;최승복
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.499-504
    • /
    • 2002
  • To reduce unwanted vibrations in war ship which may be transmitted through underwater path, it is required to use high damping mounts to isolate the vibration. In this work, the beam structure with squeeze mode ER mount is proposed and response characteristics such as acceleration and force transmissibility of beam with constant voltage and optimal controller are experimentally analyzed. The controller is empirically realized and control responses are evaluated in frequency domains. Experiments show vibration reduction capability of squeeze mode ER mount.

  • PDF

Vibration Reduction of Beam Structure Using Squeeze Mode ER Mount (압착모드형 ER마운트를 이용한 보 구조물의 진동저감 해석)

  • 정우진;김두기;정의봉;홍성룡;최승복
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.7
    • /
    • pp.557-564
    • /
    • 2002
  • To reduce unwanted vibrations in war ship which may be transmitted through underwater path, it is required to use high damping mounts to isolate the vibration. In this work, the beam structure with squeeze mode ER mount is proposed and response characteristics such as acceleration and force transmissibility of beam with constant voltage and optimal controller are experimentally analyzed. The controller is empirically realized and control responses are evaluates in frequency domains. Experiments show vibration reduction capability of squeeze mode ER mount.

Dynamic Properties of Squeeze Type Mount Using MR Fluid (MR유체를 이용한 스퀴즈모드 타입 마운트의 동특성)

  • Ahn, Young-Kong;Yang, Bo-Suk;Ha, Jong-Yong;Kim, Dong-Jo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11b
    • /
    • pp.464-467
    • /
    • 2002
  • This paper presents investigation of damping characteristics of squeeze mode type MR (magneto-Rheological) mount experimentally. Since damping property of the MR fluid is changed by variation of the applied magnetic field strength, squeeze mode type MR mount proposed in the study has variable damping characteristics according to the applied magnetic field strength. Impact and excitation tests were performed to investigate the dynamic properties of squeeze mode type MR mount. Responses of the mount were compared in proportion to the applied magnetic field strength. The experimental results show that the mount can effectively reduce vibration amplitude in a wide frequency range by changing the applied magnetic field strength.

  • PDF

Vibration and Noise Control of Structural Systems Using Squeeze Mode ER Mounts

  • Jeong, Weui-Bong;Yoo, Wan-Suk;Jung, Woo-Jin
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.12
    • /
    • pp.1949-1960
    • /
    • 2003
  • This paper presents vibration and noise control of flexible structures using squeeze mode electro-rheological mounts. After verifying that the damping force of the ER mount can be controlled by the intensity of the electric fild, two different types of ER squeeze mounts have been devised. Firstly, a small size ER mount to support 3 kg is manufactured and applied to the frame structure to control the vibration. An optimal controller which consists of the velocity and the transmitted force feedback signals is designed and implemented to attenuate both the vibration and the transmitted forces. Secondly, a large size of ER mount to support 200 kg is devised and applied to the shell structure to reduce the radiated noise. Dynamic modeling and controller design are undertaken in order to evaluate noise control performance as well as isolation performance of the transmitted force. The radiated noise from the cylindrical shell is calculated by SYSNOISE using forces which are transmitted to the cylindrical shell through two-stage mounting system.

Segregation of Squeeze Cast Al-7% Si-0.3% Mg Alloy Bars (용탕단조한 Al-7%Si-0.3% Mg합금 봉상시료의 편석거동)

  • Kim, Ki-Young;Ki, Seok-Do;Park, Jong-Rak
    • Journal of Korea Foundry Society
    • /
    • v.13 no.1
    • /
    • pp.71-80
    • /
    • 1993
  • Squeeze casting has advantages to improve mechanical properties of nonferrous castings without losing high productivity. Sound pore free structure makes it possible to be subjected to heat treatment and welding. This process became popular to produce lighter automobile parts alternating cast iron parts. It has, however, two disadvantages of segregation and scattered structure due to the solidified layers in sleeve. In this study segregation behavior of squeeze cast Al-7%Si-0.3%Mg alloy bars was investigated using HVSC machine under various injection conditions. Degree of segregation decreased with injection pressure and effect of injection velocity on it was small. Segregation mode of solute was strongly governed by solidification mode and flow pattern.

  • PDF

Dynamic Properties of Squeeze Type Mount Using MR Fluid (MR유체를 이용한 스퀴즈모드형 마운트의 동특성)

  • 하종용;안영공;양보석;정석권;김동조
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.374-378
    • /
    • 2003
  • This paper presents investigation of damping characteristics of squeeze mode type MR (Magneto-Rheological) mount experimentally. Since damping property of the MR fluid is changed by variation of the applied magnetic field strength, squeeze mode type MR mount proposed in the study has variable damping characteristics according to the applied magnetic field s strength. In the present work, the performance of the mount was experimentally investigated according to the magnetic field strength and exciting frequencies. The experimental results present that the MR mount can effectively reduce the vibration in a wide range of frequency by controlling the applied electromagnetic filed strength. Viscous damping and stiffness coefficients of the MR mount tend to be changed according to the variation of the applied currents in this study and MR effect is reduced by increasing exciting frequency.

  • PDF

Dynamic Properties of Squeeze Type Mount Using MR Fluid (MR 유체를 이용한 스퀴즈모드형 마운트의 동특성)

  • 안영공
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.6
    • /
    • pp.490-495
    • /
    • 2003
  • This paper presents investigation of damping characteristics of squeeze mode type MR (magneto-rheological) mount experimentally. Since damping property of the MR fluid is changed by variation of the applied magnetic field strength, squeeze mode type MR mount proposed in the study has variable damping characteristics according to the applied magnetic field strength. In the present work, the performance of the mount was experimentally Investigated according to the magnetic field strength and exciting frequencies. The experimental results present that the MR mount can effectively reduce the vibration in a wide range of frequency by controlling the applied electromagnetic field strength. Viscous damping and stiffness coefficients of the MR mount tend to be changed according to the variation of the applied currents in this study and MR effect is reduced by increasing exciting frequency.