• Title/Summary/Keyword: Squeegee speed

Search Result 7, Processing Time 0.02 seconds

The Effect of Squeezing Parameters on the Fabrication Behavior of Phosphor Films (스퀴징 공정변수에 따른 형광체막 성형 거동에 관한 연구)

  • Park, J.Y.;Lee, J.W.;Yoon, G.S.
    • Transactions of Materials Processing
    • /
    • v.24 no.2
    • /
    • pp.95-100
    • /
    • 2015
  • It was confirmed that when phosphor slurry is formed in the cavity of an elastic mold, the pressure distribution of the phosphor slurry varies as a function of the major squeegee parameters (squeegee angle, squeegee velocity, and the viscosity of the phosphor slurry). The higher the slurry viscosity, the faster the squeegee velocity, and the smaller the squeegee angle, the higher the filling completeness of the phosphor slurry. The optimum conditions for complete filling of the phosphor slurry were found when the squeegee angle was between 30 to 45 degrees, squeegee velocity at 40 to 70mm/sec, and the viscosity of the phosphor slurry composite was at 6,556 cps (i.e. phosphor content around 50 wt. %).

Effects of Process Conditions on Electrode Patterning by Screen Printing Method (스크린 인쇄법의 공정 조건이 전극 패턴 균일성에 미치는 영향)

  • Lee, Na-Young;Kim, Dong-Chul;Yeo, Dong-Hun;Lee, Joo-Sung;Yoon, Sang Ok;Shin, Hyo-Soon;Lee, Joon-Hyung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.5
    • /
    • pp.355-359
    • /
    • 2020
  • In this study, image analysis and surface roughness measurements using an optical microscope are presented as a method to quantitatively evaluate the results of screen printing. Using this method, the squeegee speed, which is the printing process condition, and the printability of the electrode according to the screen mesh were evaluated. Increasing the squeegee speed in the printing process acts as a process element that increases the line width precision of the printed electrode and lowers the surface roughness of the printed surface. Furthermore, the edge roughness, which indicates the clarity of printing, was not significantly affected by the speed of the squeegee during printing. The print thickness increases in proportion to the squeegee speed, but is largely dependent on the screen thickness.

Evaluation of Solder Printing Efficiency with the Variation of Stencil Aperture Size (스텐실 개구홀 크기 변화에 따른 솔더프린팅 인쇄효율 평가)

  • Kwon, Sang-Hyun;Kim, Jeong-Han;Lee, Chang-Woo;Yoo, Se-Hoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.4
    • /
    • pp.71-77
    • /
    • 2011
  • Main parameters of the screen printing were determined and the printing parameters were optimized for 0402, 0603, and 1005 chips in this study. The solder pastes used in this study were Sn-3.0Ag-0.5Cu and Sn-0.7Cu. The process parameters were stencil thickness, squeegee angle, printing speed, stencil separating speed and gap between stencil and PCB. The printing pressure was fixed at 2 $kgf/cm^2$. From ANOVA results, the stencil thickness and the squeegee angle were determined to be main parameters for the printing efficiency. The printing efficiency was optimized with varying two main parameters, the stencil thickness and the squeegee angle. The printing efficiency increased as the squeegee angle was lowered under 45o for all chips. For the 0402 and the 0603 chips, the printing efficiency increased as the stencil thickness decreased. On the other hand, for the 1005 chip, the printing efficiency increased as the stencil thickness increased.

The Arrangement Process Optimization of Vacuum Glazing Pillar using the Design of Experiments (실험계획법을 이용한 진공유리 Pillar의 배치공정 최적화)

  • Kim, Jae Kyung;Jeon, Euy Seik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.1
    • /
    • pp.73-78
    • /
    • 2012
  • In this study, the optimal process condition was induced about the pillar arrangement process of applying the screen printing method in the manufacture process of vacuum glazing panel. The high precision screen printing is technology which pushes out the paste and spreads it by using the squeegee on the stainless steel plate in which the pattern is formed. The screen printing method is much used in the flat panel display field including the LCD, PDP, FED, organic EL, and etc for forming the high precision micro-pattern. Also a number of studies of screen printing method have been conducted as the method for the cost down through the improvement of productivity. The screen printing method has many parameters. So we used Taguchi method in order to decrease test frequencies and optimize this parameters efficiently. In this study, experiments of pillar arrangement were performed by using Taguchi experimental design. We analyzed experimental results and obtained optimal conditions which are 4 m/s of squeegee speed, $40^{\circ}$ of squeegee angle and distance between metal mask and glass.

Analysis of the Effect of Screen Printing Variables on Thick Film Thickness (스크린인쇄조건에 따른 후막인쇄물의 잉크층 두께에 관한 분석)

  • Lim, Kyu-Jin;Yi, Arm;Shin, Jong-Soon
    • Journal of the Korean Graphic Arts Communication Society
    • /
    • v.20 no.2
    • /
    • pp.19-30
    • /
    • 2002
  • Four screen mesh counts of 100, 150, 200, and 305 threads per inch are chosen and a designed test figure is exposed on them for printing experiment to measure the ink deposit thickness. Among a number of variables, the ink viscosity, the screen gap and the squeegee pressure and speed are estimated with their effected thickness. These variables affect as much as around 50% compared with the theoretical ink volume listed by the mesh manufacturer and each variable has different influence on the thickness. The data and graphs have been analyzed for the thick film production.

  • PDF

Screen Printing Electrode Formation Process for Crystalline Silicon Solar Cell (결정질 실리콘 태양전지용 스크린 프린팅 전극 공정 개발)

  • Eom, Taewoo;Lee, Sang Hyeop;Song, Chan Moon;Park, Sang Yong;Lim, Donggun
    • Current Photovoltaic Research
    • /
    • v.5 no.1
    • /
    • pp.9-14
    • /
    • 2017
  • The screen printing technique is one of process to form electrode for crystalline silicon solar cell and has been studied a lot, because it has many advantages such as low price, high efficiency and mass production due to simple and fast process. The reason why electrode formation is important is for influence of series resistance and amount of incident light in crystalline silicon solar cell. In this study, electrode was formed by screen printing method with various conditions like squeegee angle, printing speed, snap off, printing pressure. After optimizing various conditions, double printing method was applied to obtain low series resistance and high aspect ratio. As a result, we obtained electrode resistance 45.31 ohm, aspect ratio 4.38, shading loss 7.549% mono-crystalline silicon solar cell with optimal double screen printing condition.

Effect of Metal Mask Screen on Metal-induced Recombination Current and Solar Cell Characteristics (금속 마스크 스크린이 금속 재결합 전류와 태양전지 특성에 미치는 영향)

  • Lee, Uk Chul;Jeong, Myeong Sang;Lee, Joon Sung;Song, Hee-eun;Kang, Min Gu;Park, Sungeun;Chang, Hyo Sik;Lee, Sang Hee
    • Current Photovoltaic Research
    • /
    • v.9 no.1
    • /
    • pp.6-10
    • /
    • 2021
  • The mesh mask screen, which is generally used for screen printing metallization of silicon solar cell, requires high squeegee pressure and low printing speed. These requirements are acting as a limiting factor in production yield in photovoltaic industries. In order to improve the productivity, a metal mask, which has high durability and high printing speed, has been researched. In this paper, the characteristics of each solar cell, in which electrodes were formed by using a metal mask and a mesh mask, were analyzed through recombination current density. In particular, the metal-induced recombination current density (Jom) representing the recombination of the emitter-metal interface was calculated using the shading method, and the resulting efficiency and open-circuit voltage were analyzed through the diode equation. As a result of analyzing the proportion of the metal-induced recombination current density to the total emitter recombination current density, it was analyzed that the reduction of the metal-induced recombination current density through the metal mask is an important factor in reducing the total recombination current density of the solar cell.